Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:43:56.131Z Has data issue: false hasContentIssue false

Enabling Technology Based on Leaky-Mode Resonance Effects in Periodic Films

Published online by Cambridge University Press:  01 February 2011

Robert Magnusson
Affiliation:
[email protected], University of Connecticut, Electrical & Computer Engineering, 371 Fairfield Way, Storrs, CT, 06269, United States, 860 486 4822
Mehrdad Shokooh-Saremi
Affiliation:
[email protected], University of Connecticut, Electrical & Computer Engineering, 371 Fairfield Way, Storrs, CT, 06269, United States
Kyu J. Lee
Affiliation:
[email protected], University of Connecticut, Electrical & Computer Engineering, 371 Fairfield Way, Storrs, CT, 06269, United States
Debra Wawro
Affiliation:
[email protected], Resonant Sensors Incorporated, 202 East Border Street, Arlington, TX, 76010, United States
Get access

Abstract

The physical properties of resonant leaky modes in periodically patterned layered materials are summarized. Representative examples of photonic device applications including filters, polarizers, wideband reflectors, tunable elements, and biosensors are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herzig, H. P., Ed., Micro-Optics: Elements, systems and applications (Taylor & Francis, London, 1997).Google Scholar
2. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
3. Noda, S., Fujita, M., and Asano, T., Nature Photonics 1, 449 (2007).Google Scholar
4. Magnusson, R. and Wang, S. S., Appl. Phys. Lett. 61, 1022 (1992).Google Scholar
5. Ding, Y. and Magnusson, R., Opt. Express 15, 680 (2007).Google Scholar
6. Vincent, P. and Neviere, M., Appl. Phys. 20, (345) 1979.Google Scholar
7. Mashev, L. and Popov, E., Opt. Comm. 55, (377) 1985.Google Scholar
8. Golubenko, G. A., Svakhin, A. S., Sychugov, V. A., and Tishchenko, A. V., Sov. J. Quantum Electron. 15, (886) 1985.Google Scholar
9. Avrutsky, I. A. and Sychugov, V. A., J. Mod. Optics 36, (1527) 1989.Google Scholar
10. Wang, S. S. and Magnusson, R., Appl. Opt. 32, (2606) 1993.Google Scholar
11. Magnusson, R. and Wang, S. S., US patent number 5 216 680 (1 June 1993).Google Scholar
12. Magnusson, R. and Wang, S. S., Appl. Opt. 34, (8106) 1995.Google Scholar
13. Ding, Y. and Magnusson, R., Opt. Express 12, (5661) 2004.Google Scholar
14. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J., and Suzuki, Y., IEEE Photonics Technol. Lett. 16, (1676) 2004.Google Scholar
15. Magnusson, R. and Ding, Y., IEEE Photonics Technology Letters 18, (1479) 2006.Google Scholar
16. Wawro, D., Tibuleac, S., Magnusson, R., and Liu, H., Proc. SPIE 3911, 86 (2000).Google Scholar
17. Cunningham, B., Li, P., Lin, B., and Pepper, J., Sens. Actuators B 81, (316) 2002.Google Scholar
18. Magnusson, R., Ding, Y., Lee, K. J., Priambodo, P. S., and Wawro, D., Proc. SPIE 6008, 60080U (2005).Google Scholar
19. Magnusson, R. and Wawro, D., Proc. IEEE LEOS Annual Meeting 2007), 228.Google Scholar
20. Macleod, H. A., Thin Film Optical Filters, 3rd ed. (IOP, Bristol, 2001).Google Scholar