Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T07:41:42.108Z Has data issue: false hasContentIssue false

Employing Photo-Assisted Ligand Exchange Technique in Layered Quantum Dot LEDs

Published online by Cambridge University Press:  08 March 2011

Wenjia Hu
Affiliation:
Engineering Science and Mechanics, the Pennsylvania State University, University Park, Pennsylvania; Chemical Engineering and Technology, Tianjin University, Tianjin, China;
Shuai Gao
Affiliation:
Engineering Science and Mechanics, the Pennsylvania State University, University Park, Pennsylvania; Chemical Engineering and Technology, Tianjin University, Tianjin, China;
Paras N. Prasad
Affiliation:
Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York
Jingkang Wang
Affiliation:
Chemical Engineering and Technology, Tianjin University, Tianjin, China;
Jian Xu
Affiliation:
Engineering Science and Mechanics, the Pennsylvania State University, University Park, Pennsylvania;
Get access

Abstract

We presented in this paper a photo-assisted ligand exchange approach whereby light will be introduced to facilitate the replacement of oleic acid (OA) ligand molecules over PbSe quantum dots (QDs). The ligand-exchanged QDs were used to fabricate quantum dot light-emitting-diodes (QD-LEDs), which outperform the devices comprising the QDs without ligand-replacement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sun, Q., Wang, Y. A., Li, L. S., Wang, D., Zhu, T., Xu, J., Yang, C., and Li, Y., Nat Photon 1(12), 717 (2007).Google Scholar
2. Qi, D., Fischbein, M., Drndic, M., and Selmic, S., Applied Physics Letters 86(9), 093103 (2005).Google Scholar
3. Gur, I., Fromer, N. A., Geier, M. L., and Alivisatos, A. P., Science 310 (5747), 462 (2005).Google Scholar
4. Law, M., Luther, J. M., Song, Q., Hughes, B. K., Perkins, C. L., and Nozik, A. J., Journal of the American Chemical Society 130(18), 5974 (2008).Google Scholar
5. Yu, W. W., Falkner, J. C., Shih, B. S., and Colvin, V. L., Chemistry of Materials 16(17), 3318 (2004).Google Scholar
6. Kim, W., Kim, S., Lee, K., Samoc, M., Cartwright, A., and Prasad, P., Nano Letters 8(10), 3262 (2008).Google Scholar
7. Moreels, I., Fritzinger, B., Martins, J. C., and Hens, Z., Journal of the American Chemical Society 130(45), 15081 (2008).Google Scholar
8. Zhang, Y., Dai, Q. Q., Li, X. B., Cui, Q. Z., Gu, Z. Y., Zou, B., Wang, Y. D., and Yu, W. W., Nanoscale Research Letters 5(8), 1279 (2010).10.1007/s11671-010-9637-7Google Scholar