Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:46:17.191Z Has data issue: false hasContentIssue false

Emissivity Of Coated Silicon At Elevated Temperatures

Published online by Cambridge University Press:  10 February 2011

H. Rogne
Affiliation:
Microelectronics Research Centre, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, UK.
H. Ahmed
Affiliation:
Microelectronics Research Centre, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, UK.
Get access

Abstract

Isothermal electron beam heating has been combined with in situ optical measurements in order to measure the emissivity of coated silicon samples at elevated temperatures. The coatings include a number of oxide, nitride, and silicon films. Infrared emission spectra were recorded from I to 9 μm for temperatures between 750 and 1200°C. The experimental results were compared with calculated theoretical values, which were predicted from the theory of thin film coatings, using a matrix model incorporating the optical constants for the materials. A good match between experimental and theoretical values validates the use of the infrared optical constants for theoretical modelling related to control and temperature measurements in rapid thermal processing systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nulman, J., Antonio, S., and Blomigan, W., Appl. Phys. Lett. 56, 2513 (1990).Google Scholar
2. Timans, P. J., in Rapid Thermal Processing'94, edited by Fair, R. B., and Lojek, B., pp. 186–93 (RTP'94, Round Rock, 1994).Google Scholar
3. Wood, S., Apta, P., King, T. J., Moslehi, M., and Saraswat, K., SPIE 1393, 337 (1990).Google Scholar
4. Hebb, J. P., Jensen, K. F., and Egan, E. W, MRS Spring Meeting 1995, San Fransisco, CA.Google Scholar
5. Ozturk, M. C. and Sanganeria, M. K., Appl. Phys. Lett. 61, 2697 (1992).Google Scholar
6. Liao, J. L., and Kamins, T. I., Appl. Phys. Lett. 67, 3848 (1990).Google Scholar
7. Hill, C., Jones, S., and Boys, D., “Rapid thermal annealing - theory and practice”. Levy, R. A. ed., Plenum, New York (1989).Google Scholar
8. Pettibone, D. W., Suarez, J. R., and Gat, A., MRS Symp. Proc. 52, 209 (1986).Google Scholar
9. Nulman, J., Cohen, B., Blonigan, W., Antonio, S., Meinecke, R., and Gat, A., MRS Symp. Proc. 146, 461 (1989).Google Scholar
10. Nulman, J., Proc. SPIE 1189, 72 (1989).Google Scholar
11. Vandenabeele, P., Maex, K., and De Keersmaecker, R., MRS Symp. Proc. 146, 149 (1989).Google Scholar
12. Kakoschke, R., and BuBmann, E., MRS Symp. Proc. 146, 473 (1989).Google Scholar
13. Sorrell, F. Y., Harris, J. A., Ozturk, M. C., and Wortman, J. J., Proc. SPIE 1189, 30 (1989).Google Scholar
14. Wong, P. Y., Hess, C. K., and Miaoulis, I. N., MRS Symp. Proc. 303, 217 (1993).Google Scholar
15. Wong, P. Y., and Miaoulis, I. N., MRS Symp. Proc. 342, 395 (1994).Google Scholar
16. Wong, P. Y., and Miaoulis, I. N., in Rapid Thermal Processing ';93, ed. by Fair, R. B., and Lojek, B., pp 459–65 (RTP'93, Scottsdale, 1993).Google Scholar
17. Nakos, J. S., in Rapid Thermal Processing ‘93, ed. by Fair, R. B., and Lojek, B., pp 421–8 (RTP'93, Scottsdale, 1993).Google Scholar
18. S. Onishi, and Sakiyama, K., IEEE Electron Device Lett. EDL–8, 176 (1987).Google Scholar
19. Shanabrook, B. V., Waterman, J. R., Davis, J. L., Wagner, R. J., and Katzer, D. S., J. Vac. Sci. Technol. B 11, 994 (1993).Google Scholar
20. Dumin, D. J., Rev. Sci. Instrum. 38, 1107 (1967).Google Scholar
21. Kamins, T. I., and Dell'Oca, C. J., J. Electrochem. Soc. 119, 112 (1972).Google Scholar
22. Sugawara, K., Nakazawa, Y., and Yoshimi, T., J. Electrochem. Soc. 123, 586 (1976).Google Scholar
23. Sugawara, K., Yoshimi, T., Nakazawa, Y., and Itoh, K., J. Electrochem. Soc. 123, 759 (1976).Google Scholar
24. SpringThorpe, A. J., Humphreys, T. P., Majeed, A., and Moore, W. T., Appl. Phys. Lett. 55, 2138 (1989).Google Scholar
25. SpringThorpe, A. J., and Majeed, A., J. Vac. Sci. Technol. B 8, 266 (1990).Google Scholar
26. Houng, Y. M., Tan, M. R. T., Liang, B. W., Wang, S. Y., and Mars, D. E., J. Vac. Sci. Technolo. B 12, 1221 (1994).Google Scholar
27. Bobel, F. G., Miller, H., Wowchak, A., Hert, B., Van Hove, J., Chow, L. A., Chow, P. P., J. Vac. Sci. Technol. B 12, 1207 (1994).Google Scholar
28. P. L. A. Chr. van der Meer, M., Giling, L. J., and Kroon, S. G., J. Appl. Phys. 47, 652 (1976).Google Scholar
29. Delfino, M., and Hodul, D. T., IEEE Trans. Electron Devices 39, 89 (1992).Google Scholar
30. Ravindra, N. M., Tong, F. M., Kosonocky, W. F., Markham, J. R., Liu, S., and Kinsella, K., MRS Symp. Proc. 342, 431 (1994).Google Scholar
31. Ravindra, N. M., Tong, F. M., Abedrabbo, S., Chen, W., Schmidt, W., in 4th Int. Conf on Advanced Thermal Processing of Semiconductors- RTP, 190 (1996).Google Scholar
32. Rogne, H., Timans, P. J., and Ahmed, H., Appl. Phys. Lett. 69, 2190 (1996).Google Scholar
33. Olson, G. L., and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
34. Dilhac, J. M., Ganibal, C., Nolhier, N. and Rousset, B., Rev. Sci. Instrum. 63, (1988).Google Scholar
35. Timans, P. J., in Advances in Rapid Thermal and Integrated Processing, ed. F., Roozeboom, ch. 2 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996).Google Scholar
36. Hecht, E., and Zajac, A., Optics, (Addison-Wesley, Reading, MA, 1974) pp. 2959.Google Scholar
37. Born, M., and Wolf, E., Principles of Optics, pp 3671 (Pergamon, London, 1959).Google Scholar
38. Philipp, H. R., J. Appl. Phys. 50, 1053 (1979).Google Scholar
39. Philipp, H. R., in “Handbook of Optical constants”, (Academic Press, 1985).Google Scholar
40. Kramers, H. A., and Kronig, R. de L., Z Phys. 30, 521 (1929).Google Scholar
41. Philipp, H. R., in Properties of Silicon, (INSPEC, lEE, London, 1988).Google Scholar
42. Levy, R. A., and Nassau, K., J. Electrochem. Soc. 133, 1417 (1986).Google Scholar
43. Krishnan, K., Dasuri, P., and Stout, P., “FTIR analysis of Borophosphosilicate glasses”. Bio-Rad Digilab Division (1996).Google Scholar
44. Cheng, H. C., in ULSI Techn., ed. by. Chang, C. Y., and Sze, S. M. (McGraw-Hill, 1996).Google Scholar
45. Li, H. H., J Phys. Chem. Ref Data 9, 561 (1980).Google Scholar
46. Jellison, G. E., Keefer, Jr. M., and Thomquist, L., MRS Symp. Proc. 283, 561 (1993).Google Scholar
47. Swidefsky, F., Thin Solid Films 18, 45 (1973).Google Scholar
48. Hauge, P. S., J. Opt. Soc. Am. 69, 1143 (1979).Google Scholar
49. Lubberts, G., Burkey, B. C., Moser, F., and Trabka, E. A., J. Appl. Phys. 52, 6870 (1981).Google Scholar
50. Beers, A. M., Hintzen, H. T. J. M., and Bloem, J., J. Electrochem. Soc. 130, 1426 (1983).Google Scholar
51. Xu, H., and Sturm, J. C., MRS. Symp. Proc. 387, 29 (1995).Google Scholar