Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:08:38.070Z Has data issue: false hasContentIssue false

Emission of Precipitation Deposited PbS Quantum Dots on Polyethylene Terephthalate

Published online by Cambridge University Press:  08 October 2013

Bruno Ullrich*
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Andrew R. Markelonis
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Joanna S. Wang
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Gail J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright Patterson AFB, OH 45433-7707, USA
Get access

Abstract

Centrifuge enforced precipitation was used to disperse PbS quantum dots (diameter 4.7 nm) on polyethylene terephthalate. By employing double frequency Fourier transform spectroscopy, we studied the emission properties of the sample. Gaussian shaped emission spectra from cryogenic temperatures up to room temperatures were observed, demonstrating the potential of PbS quantum dots to be used as light emitters in combination with organic matrices. One interesting feature is that the linewidth of the emission spectrum does not follow the expected thermal broadening.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kasap, S. O., Principles of Electronic Materials and Devices, 2nd Edition (McGraw Hill, New York, 2002).Google Scholar
Grundmann, M., The Physics of Semiconductors (Springer, Berlin, 2006).Google Scholar
Schroeder, R. and Ullrich, B., Appl. Phys. Lett. 81, 556 (2002).CrossRefGoogle Scholar
Gerstner, E., Nature: Materials Science and Nanotechnology - News & Features, July 2002.Google Scholar
Binder, W. H., Kluger, C., Josipovic, M., Straif, C. J., Friedbacher, G., Macromolecules 39, 8092 (2006).CrossRefGoogle Scholar
Binder, W. H., Lomoschitz, M., Sachsenhofer, R., Friedbacher, G., J. Nanomaterials, Article ID 613813, (2009).Google Scholar
Li, S., Lin, M. M., Toprak, M. S., Kim, D. K., Muhammed, M., Nano Reviews 1, 5214 (2010).CrossRefGoogle Scholar
Guenes, S., Fritz, K. P., Neugebauer, H., Sariciftci, N. S., Kumar, S., and Scholes, G. D., Solar Energy Materials & Solar Cells 91, 420 (2007).CrossRefGoogle Scholar
Akhtar, J., Afzaal, M., Vincent, M. A., Burton, N. A., Hillier, I. A., and O’Brien, P., Chem. Comm. 47, (2011).Google Scholar
Du, H., Xu, G. Q., Chin, W. S., Huang, L., Ji, W., Chem. Mater. 14, 4473 (2002).CrossRefGoogle Scholar
Gorelikovand, I., Kumacheva, E., Chem. Mater. 16, 4122 (2004).CrossRefGoogle Scholar
, W., Yamada, F., and Kamiya, I., J. Vac. Sci. Technol. B 28, C5E8 (2010).CrossRefGoogle Scholar
Ullrich, B., Xiao, X. Y., and Brown, G. J., J. Appl. Phys. 108, 013525 (2010).CrossRefGoogle Scholar
Ullrich, B., Wang, J. S., and Brown, G. J., Appl. Phys. Lett. 99, 081901 (2011).CrossRefGoogle Scholar
Wise, F. W., Acc. Chem. Res. 33, 773 (2000).CrossRefGoogle Scholar
Chen, L., Yang, H., Qiang, Z., Pang, H., Sun, L., Ma, Z., Pate, R., Stiff-Roberts, A., Gao, S., Xu, J., Brown, G. J., and Zhou, W., Appl. Phys. Lett. 96, 083111 (2010).CrossRefGoogle Scholar
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., Israelachvili, J., Nature Materials 7, 527 (2008).CrossRefGoogle Scholar
Kinge, S., Crego-Calama, M., Reinhoudt, D. N., ChemPhysChem 9, 20 (2008).CrossRefGoogle Scholar
Haryono, A., Binder, W. H., Small 2, 600 (2006).CrossRefGoogle Scholar
Ullrich, B. and Brown, G. J., Rev. Sci. Instrum. 83, 016105 (2012).CrossRefGoogle Scholar
Ullrich, B., Wang, J., Xiao, X., Brown, G., Spectroscopy Photonics International Engineering (SPIE), 8271, 82710A1 (2012).Google Scholar
Turyanska, L., Patanè, A., Henini, M., Hennequin, B., and Thomas, N. R., Appl. Phys. Lett. 90, 101913 (2007).CrossRefGoogle Scholar
Gaponenko, M. S., Lutich, A. A., Tolstik, N. A., Onushchenko, A. A., Malyarevich, A. M., Petrov, E. P., and Yumashev, K. V., Phys. Rev. B 82, 125320 (2010).CrossRefGoogle Scholar
Lin, W., Fritz, K., Guerin, G., Bardajee, G. R., Hinds, S., Sukhovatkin, V., Sargent, E. H., Scholes, G. D., and Winnik, M. A., Langmuir 24, 8215 (2008).CrossRefGoogle Scholar