Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:29:42.183Z Has data issue: false hasContentIssue false

Emission Inhomogeneity in InAs Quantum Dot DWELL Structures

Published online by Cambridge University Press:  01 February 2011

Alejandro Vivas Hernández
Affiliation:
[email protected], ESIME-National Polytechnic Institute, Materials Science, México D.F., Mexico
Gerorgiy Polupan
Affiliation:
[email protected], ESIME-National Polytechnic Institute, Materials Science, México D.F., Mexico
Eric Velazquez
Affiliation:
[email protected], ESIME-National Polytechnic Institute, Materials Science, México D.F., Mexico
Ingri J. Guerrero Moreno
Affiliation:
[email protected], UPIITA-National Polytechnic Institute, México D.F., Mexico
L. Scherbyna
Affiliation:
[email protected], National Technical University –“KPI” of Ukraine, Kyiv, Ukraine
Get access

Abstract

The photoluminescence spectra and its homogeneity for InAs quantum dots (QDs) embedded into In0.15Ga0.85As/GaAs quantum well (QW) structures with QDs grown at different temperatures (470-535°C) have been investigated at 300 K. Photoluminescence (PL) spectra along the scanning line crossed the wafers were measured at 300 K in a set of points on the QD structures under the excitation of the 804 nm line of a solid state IR laser at an excitation power density of 100 W/cm2. In QD structures with InAs QDs grown at 470°C the low integrated PL intensity, the high dispersion of QD sizes in ensemble and, as a result, the large value of FWHM (50-70meV), but the low dispersion of QD ensemble parameters along the line crossed the structures have been detected. In QD structures grown at high temperatures 490-535 °C the high integrated PL intensity, the low dispersion of QD sizes in ensemble and, as a result, less values of FWHM, but the essential dispersion of QD ensemble parameters along the line crossed the structures have been revealed. The reasons of these types of PL nonhomogeneity have been discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bimberg, D. Grundman, M. Ledentsov, N.N. Quantum Dot Heterostructures, Wiley & Sons, 2001, p. 328.Google Scholar
2 Grundmann, M. (Ed.), Nano-Optoelectronics, Springer, 2002, p. 442.Google Scholar
3 Torchynska, T.V. Espinola, J.L. Casas, Eliseev, P.G. Stintz, A. Malloy, K.J. Sierra, R. Pena, Phys. Status Solidi, (a) 195, 209 (2003).Google Scholar
4 Liu, G.T. Stintz, A. i, H.L. Malloy, K.J. Lester, L.F. Electron. Lett. 35, 1163 (1999).Google Scholar
5 Ustinov, V.M. Maleev, N.A. Shukov, A.E. Kovsh, A.R. A.YEgorov, u. Lunev, A.V. Volovik, B.V., Krestnikov, I.L. YMusikhin, u.G. Bert, N.A. Kopev, P.S. ZAlferov, h.I. Ledentsov, N.N., Bimberg, D. Appl. Phys. Lett. 74, 2815 (1999).Google Scholar
6 Eah, S.-K. Jhe, W. Arakawa, Y. Appl. Phys. Lett. 80, 2779 (2002).Google Scholar
7 Dybiec, M. Ostapenko, S. Torchynska, T.V. Losada, E. Velasquez, Appl. Phys. Lett. 84 (25), 5165 (2004).Google Scholar
8 Dybiec, M. Ostapenko, S. Torchynska, T.V. Lozada, E. Velazquez, Eliseev, P.G. Stintz, A. Malloy, K.J. Phys. Stat. Solid. (C) 2 (8), 2951 (2005).Google Scholar
9 Torchynska, T.V. Dybiec, M. Ostapenko, S. Phys. Rev. B 72, 195341 (2005).Google Scholar
10 Jacobs, S.E.J. Kemerink, M. Koenroad, P.M. Hopkinson, M. Salimink, H.W.M. Walter, J.H. Appl. Phys. Lett. 83 (2003) 290.Google Scholar
11 Torchynska, T.V. Espinola, J.L. Casas, Losada, E. Velasquez, Eliseev, P.G. Stintz, A. Malloy, K.J., Sierra, R. Pena, Surf. Scien. 532–535, 848 (2003).Google Scholar
12 Torchynska, T.V. Espinola, J.L. Casas, Borkovska, L.V. Ostapenko, S. Dybiec, M. Polupan, O., Korsunska, N.O. Eliseev, P.G. Stintz, A. Malloy, K.J. J. Appl. Phys. 101 (2), 024323 (2007).Google Scholar
13 Stintz, A. Liu, G. T. Gray, L. Spillers, R. Delgado, S. M. Malloy, K. J. J. Vac. Sci. Tech. B. 18(i3), 1496 (2000).Google Scholar
14 Torchynska, T. V. J. Appl. Phys. 104 (7), 074315 (2008).Google Scholar
15 Torchynska, T.V. Lozada, E. Velazquez, Espinola, J.L. Casas, J. Vac. Sci. & Tech. 27(2), 919 (2009).Google Scholar
16 Torchynska, T.V. Superlattice and Microstructure 45, 349 (2009).Google Scholar
17 Polupan, G. Hernandez, A. Vivas, Shcherbyna, Ye. S. Superlattice and Microstructure 47, 484 (2010).Google Scholar
18 Dybiec, M. Borkovska, L. Ostapenko, S. Torchynska, T.V. Espinola, J.L. Casas, Stintz, A. Malloy, K.J. Appl. Surf. Scien. 252 (15), 5542 (2006).Google Scholar
19 Asryan, L.V. Suris, R.A. Semicond. Sci. Technol. 11, 554 (1996).Google Scholar