Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:44:42.548Z Has data issue: false hasContentIssue false

Emission and X ray diffraction in AlGaAs/ InGaAs Quantum wells with embedded InAs Quantum dots

Published online by Cambridge University Press:  19 November 2013

R. Cisneros Tamayo
Affiliation:
ESIME– Instituto Politécnico Nacional, México D. F. 07738, México
I.J. Gerrero Moreno
Affiliation:
ESIME– Instituto Politécnico Nacional, México D. F. 07738, México
A. Vivas Hernandez
Affiliation:
ESIME– Instituto Politécnico Nacional, México D. F. 07738, México
J.L. Casas Espinola
Affiliation:
ESFM– Instituto Politécnico Nacional, México D. F. 07738, México
L. Shcherbyna
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics at NASU, Kiev, Ukraine
Get access

Abstract

The photoluminescence (PL), its temperature dependence and X-ray diffraction (XRD) have been studied in MBE grown GaAs/AlGaAs/InGaAs/AlGaAs /GaAs quantum wells (QWs) with InAs quantum dots embedded in the center of InGaAs layer in the freshly prepared states and after the thermal treatments during 2 hours at 640 or 710 °C. The structures contained two buffer (Al0.3Ga0.7As/In0.15Ga0.85As) and two capping (In0.15Ga0.85As / Al0.3Ga0.7As) layers. The temperature dependences of PL peak positions have been analyzed in the temperature range 10-500K with the aim to investigate the QD composition and its variation at thermal annealing. The experimental parameters of the temperature variation of PL peak position in the InAs QDs have been compared with the known one for the bulk InAs crystals and the QD composition variation due to Ga/Al/In inter diffusion at thermal treatments has been detected. XRD have been studied with the aim to estimate the capping/buffer layer compositions in the different QW layers in freshly prepared state and after the thermal annealing. The obtained emission and XRD data and their dependences on the thermal treatment have been analyzed and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bimberg, D., Grundman, M., Ledentsov, N. N., Quantum Dot Heterostructures, Ed. Wiley & Sons (2001) 328.Google Scholar
Ustinov, V. M., Maleev, N. A., Shukov, A. E., Kovsh, A. R., Egorov, A. Yu., Lunev, A. V., Volovik, B. V., Krestnikov, I. L., Musikhin, Yu. G., Bert, N. A., Kopev, P. S., Alferov, Zh.I., Ledentsov, N. N., Bimberg, D., Appl.Phys.Lett. 74, 2815 (1999).CrossRefGoogle Scholar
Liu, G. T., Stintz, A., Li, H., Malloy, K. J. and Lester, L. F., Electron Lett, 35, 1163 (1999).CrossRefGoogle Scholar
Stintz, A., Liu, G. T., Gray, L., Spillers, R., Delgado, S. M., Malloy, K. J., J. Vac. Sci. Technol. B. 18(3), 1496 (2000).CrossRefGoogle Scholar
Torchynska, T. V., Casas Espínola, J. L., Velazquez Losada, E., Eliseev, P. G., Stintz, A., Malloy, K. J., Peña Sierra, R., Surface Science 532, 848 (2003).CrossRefGoogle Scholar
Kapteyn, C. M. A., Lion, M., Heitz, R., and Bimberg, D., Brunkov, P. N., Volovik, B. V., Konnikov, S. G., Kovsh, A. R., and Ustinov, V. M., Appl. Phys. Lett. 76, 1573 (2000)CrossRefGoogle Scholar
Dybiec, M., Ostapenko, S., Torchynska, T. V., Velasquez Losada, E., Appl. Phy. Lett. 84, 51655167 (2004).CrossRefGoogle Scholar
Torchynska, T.V., Superlattice and Microstructure, 45, 349355 (2009).CrossRefGoogle Scholar
Seravalli, L., Frigeri, P., Minelli, M., Allegri, P., Avanzini, V., Franchi, S., Appl. Phys. Lett. 87, 063101 (2005).CrossRefGoogle Scholar
Torchynska, T., J. Appl. Phys., 104, 074315, n.7 (2008).CrossRefGoogle Scholar
Torchynska, T.V., Stintz, A., J. Appl. Phys. 108, 2, 024316 (2010).Google Scholar
Torchynska, T. V., Casas Espinola, J. L., Borkovska, L. V., Ostapenko, S., Dybic, M., Polupan, O., Korsunska, N. O., Stintz, A., Eliseev, P. G., Malloy, K. J., J. Appl. Phys. 101, 024323 (2007).CrossRefGoogle Scholar
Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., Franchi, S., Phys. Rev. B 60, 8276 (1999).Google Scholar
Le Ru, E. C., Fack, J. and Murray, R., Rhys. Rev. B. 67, 245318 (2003).CrossRefGoogle Scholar
Bacher, G., Hartmann, C., Schweizer, H., Held, T., Mahler, G., Nickel, H., Phys. Rev. B. 47, 9545 (1993).CrossRefGoogle Scholar
Varshni, Y. P., Physica 34, 149 (1967).CrossRefGoogle Scholar
Landolt-Boernstein, A., Numerical Data and Functional Reationship, in: Science and Techology, Springer, Berin, v. 22 (1987) p. 118.Google Scholar
Torchynska, T.V., Vivas Hernandez, A., Polupan, G., Velazquez Lozada, E., Material Science and Engineering B. 176, 331 (2011).CrossRefGoogle Scholar
Torchinskaya, T.V., Opto-Electronics Review, 6(2), 121 (1998).Google Scholar
Torchynska, T., Polupan, G., Conde Zelocuatecatl, F., Scherbina, E., Modern Physics Letter, 15, 593 (2001).CrossRefGoogle Scholar