Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:57:43.778Z Has data issue: false hasContentIssue false

The Emergence of Modern Nucleation Theory

Published online by Cambridge University Press:  26 February 2011

John W. Cahn*
Affiliation:
Institute for Materials Science and Engineering National Bureau of Standards Gaithersburg, MD 20899
Get access

Abstract

A series of important papers by David Turnbull and his collaborators in the late 1940's and early 1950's laid the experimental and theoretical foundation of modern nucleation theory. The elegance, versatility, and generality of the phenomenological approach, coupled with brilliant and insightful experimental confirmation, sparked widespread application which continues today. Much of David Turnbull's subsequent work in other subjects grew directly or indirectly from this work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrami, M. (1939). J.Chem. Phys. 7, 1103.CrossRefGoogle Scholar
Avrami, M. (1940). J.Chem. Phys. 8, 212.Google Scholar
Avrami, M. (1941). J.Chem. Phys. 9, 177.Google Scholar
Becker, R. (1938). Ann. Phys. 32, 128.Google Scholar
Borelius, G., Larris, F., and Ohlsson, E. (1944). Arkiv Mat. Astron. Fysik A31, #10.Google Scholar
Borelius, G. (1951). Trans. AIME 191, 477.Google Scholar
Burke, J. E., and Turnbull, D. (1952). Prog. Met. Phys. 3, 220.Google Scholar
Cahn, J. W., and Hilliard, J. E. (1958). J.Chem. Phys. 28, 258.Google Scholar
Cahn, J. W., and Hilliard, J. E. (1959). J.Chem. Phys. 31, 688.Google Scholar
Cech, R. E., and Turnbull, D. (1956). Trans. AIME 206, 124.Google Scholar
DeSorbo, W., and Turnbull, D. (1956). Acta Met 4, 495.CrossRefGoogle Scholar
Fisher, J. C. (1948). J. Appl.Phys. 19, 1062.Google Scholar
Fisher, J. C., Hollomon, J. H., and Turnbull, D. (1948). J. Appl.Phys. 19, 775.Google Scholar
Fisher, J. C., Hollomon, J. H., and Turnbull, D. (1949a). Trans. AIME 185, 691.Google Scholar
Fisher, J. C., Hollomon, J. H., and Turnbull, D. (1949b). Science 109, 168.CrossRefGoogle Scholar
Gibbs, J. W. (1948). “Collected Works,” V.1. Yale University Press, New Haven, p. 354.Google Scholar
Hall, C. F. (1879). “Narrative of the Second Artic Expedition,” edited by Nourse, J. E., Washington Government Printing Office, p. 146.Google Scholar
Hillig, W. B. (1958). “Growth and Perfection of Crystals,” edited by Doremus, , et al., Wiley, p. 350.Google Scholar
Hobstetter, J. H. (1949). Trans. AIME 180, 121.Google Scholar
Hollomon, J. H., and Turnbull, D. (1953). Prog. Metal. Phys. 333.Google Scholar
Hoffman, J. D., and Lauritzen, J. I., Jr. (1961). J. Res. NBS 65A, 297.CrossRefGoogle Scholar
Johnson, W. A., and Mehl, R. F. (1939). Trans. AIME 135, 416.Google Scholar
Kirkwood, J., and Buff, F. (1949). J. Chem. Phys. 17, 338. CrossRefGoogle Scholar
LaMer, V., and Pound, G. M. (1949). J. Chem. Phys. 17, 1337.CrossRefGoogle Scholar
Newkirk, J. B., and Turnbull, D. (1955). J. Appl. Phys. 26, 579.Google Scholar
Ostwald, W. (1896–1902). Lehrbuch der Allgemeinen Chemie, Engelmann Leipzig, 2nd ed., Vol.2 Part II-1, p. 144.Google Scholar
Sears, G. W. (1956). J. Phys. Chem. Solids 2, 37.Google Scholar
Pound, G. M., and LaMer, V. (1951). J. Chem. Phys. 19, 506.Google Scholar
Tolman, R. C. (1949). J. Chem. Phys. 17, 333.Google Scholar
Turnbull, D. (1948). Trans. AIME 175, 774.Google Scholar
Turnbull, D. (1949). J. Appl. Phys. 20, 817.Google Scholar
Turnbull, D. (1950a). J. Chem. Phys. 18, 198.Google Scholar
Turnbull, D. (1950b). J. Chem. Phys. 18, 768.CrossRefGoogle Scholar
Turnbull, D. (1950c). J. Chem. Phys. 18, 769.CrossRefGoogle Scholar
Turnbull, D. (1950d). J. Appl. Phys. 21, 1022.Google Scholar
Turnbull, D. (1950e). “Thermodynamics in Physical Metallurgy,” ASM, p. 282.Google Scholar
Turnbull, D. (1952a). J. Chem. Phys. 20, 411 erratum 1824.Google Scholar
Turnbull, D. (1952b). J. Chem. Phys. 20, 1327.CrossRefGoogle Scholar
Turnbull, D. (1953). Acta Met. 1, 8.Google Scholar
Turnbull, D. (1955a). Acta Met. 3, 43.Google Scholar
Turnbull, D. (1955b). “Impurities and Imperfections,” ASM, p. 121.Google Scholar
Turnbull, D. (1956). Solid State Physics 3, 226.Google Scholar
Turnbull, D., and Cech, R. E. (1950). J. Appl.Phys. 21, 804.Google Scholar
Turnbull, D., and Cohen, M. H. (1958). J. Chem. Phys. 29, 1049.Google Scholar
Turnbull, D., and Fisher, J. C. 91949). J. Chem. Phys. 17, 71.Google Scholar
Turnbull, D., and Hoffman, R. E. (1954). Acta Met. 2, 419.CrossRefGoogle Scholar
Turnbull, D., and Treaftis, H. (1955). Acta Met. 3, 43.Google Scholar
Turnbull, D., and Vonnegut, B. (1952). I and E Chem. 44, 1292.Google Scholar
Van, der Waals, J. D. (1894). Z. Phys. Chem. 13#3, 657 (Translation (1979). J. Stat. Phys. 20, 197).Google Scholar
Volmer, M., and Weber, A. (1926). Z. Phys. Chem. 119, 277.CrossRefGoogle Scholar
Volmer, M. (1939). “Kinetik der Phasenbildung,” Steinkopff, Leipzig.Google Scholar
Vonnegut, B. (1948). J. Colloid Sci. 3, 563.Google Scholar
Young, T. (1805). Phil. Trans. Roy. Soc. 95, 65.Google Scholar