Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T14:04:39.140Z Has data issue: false hasContentIssue false

Electrostatic Spray Deposition of Highly-Crystalline TIPS Pentacene Thin Films for Fabrication of Organic Field-Effect Transistors

Published online by Cambridge University Press:  20 December 2012

Norio Onojima
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Hiroki Saito
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Naomichi Nishio
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Takamasa Kato
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi, 400-8511, Japan
Get access

Abstract

This paper demonstrates that electrostatic spray deposition (ESD) method is a promising solution process to fabricate highly-crystalline organic films (6,13-bis(triisopropylsilylethynyl) pentacene; TIPS pentacene) for the use in bottom-contact organic field-effect transistors (OFETs). We obtained large crystalline domains (i.e., molecularly-oriented domains) by using an o-DCB:acetone mixed solvent (1:1), and observed good transistor behavior in an OFET having the channel length of 20 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., Nichols, J. A., and Jackson, T. N., Solid-State Electron. 47, 297 (2003).CrossRefGoogle Scholar
Zaumseil, J., Baldwin, K. W., and Rogers, J. A., J. Appl. Phys. 93, 6117 (2003).CrossRefGoogle Scholar
Knipp, D., Kumar, P., Völkel, A. R., and Street, R. A., Synth. Met. 155, 485 (2005).CrossRefGoogle Scholar
Jang, Y. -S., Seo, H. –S., Zhang, Y., and Choi, J. –H., Org. Electron. 10, 222 (2009).CrossRefGoogle Scholar
Koo, J. B., Kang, S. Y., You, I. K., and Suh, K. S., Solid-State Electron. 53, 621 (2009).CrossRefGoogle Scholar
Smith, J., Hamilton, R., McCulloch, I., Heeney, M., Anthony, J. E., Bradley, D. D. C., and Anthopoulos, T. D., Synth. Met. 159, 2365 (2009).CrossRefGoogle Scholar
Azarova, N. A., Owen, J. W., McLellan, C. A., Grimminger, M. A., Chapman, E. K., Anthony, J. E. l, and Jurchescu, O. D., Org. Electron. 11, 1960 (2010).CrossRefGoogle Scholar
Lee, M. W., Ryu, G. S., Lee, Y. U., Pearson, C., Petty, M. C., and Song, C. K., Microelectron. Eng. 95, 1 (2012).CrossRefGoogle Scholar
Sakamoto, K., Ueno, J., Bulgarevich, K., and Miki, K., Appl. Phys. Lett. 100, 123301 (2012).CrossRefGoogle Scholar
Lee, S. H., Choi, M. H., Han, S. H., Choo, D. J., Jang, J., and Kwon, S. K., Org. Electron. 9, 721 (2008).CrossRefGoogle Scholar
Jaworek, A., and Sobczyk, A. T., J. Electrostatics 66, 197 (2008).CrossRefGoogle Scholar
Abdellah, A., Fabel, B., Lugli, P., and Scarpa, G., Org. Electron. 11, 1031 (2010).CrossRefGoogle Scholar
Wilhelm, O., Mädler, L., and Pratsinis, S. E., J. Aerosol Sci. 34, 815 (2003).CrossRefGoogle Scholar
Hong, Y., Yan, F., Migliorato, P., Han, S. H., and Jang, J., Thin Solid Films 515, 4032 (2007).CrossRefGoogle Scholar
Akkerman, H. B., Li, H., and Bao, Z., Org. Electron. 13, 2056 (2012).CrossRefGoogle Scholar
Stenger, I., Frigout, A., Tondelier, D., Geffroy, B., Ossikovski, R., and Bonnassieux, Y., Appl. Phys. Lett. 94, 133301 (2009).CrossRefGoogle Scholar
James, D. T., Kjellander, B. K. C., Smaal, W. T. T., Gelinck, G. H., Combe, C., McCulloch, I., Wilson, R., Burroughes, J. H., Bradley, D. D. C., and Kim, J.-S., ACS Nano 5, 9824 (2011).CrossRefGoogle Scholar