No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The distribution of electric field in and near the surface of the electrophoretic cell determines the motion of proteins in the buffer and along the surface. This is a complicated problem, influenced by buffer ion concentration, electrode configuration, and surface and substrate conductivities. Steady state calculations approximating the experimental geometry were made for different arrangements of electrodes using MAFIA (Computer Simulation Technologies) program and ESTAT programs. Electric field distributions in both conducting surfaces like ITO (Indium Tin Oxide) (Kevley Technologies), gold and aluminum and non conducting surfaces were studied. In order to measure the EOF of the buffer neutrally charged fluorescent Poly-Styrene beads of 1 μm diameter were included in the buffer and imaged using confocal microscope. It was observed that the electric filed was highly modified by various factors like the conducting nature of the surface, position of the electrodes, salt concentration in the buffer and distance from the separation surface.