Published online by Cambridge University Press: 07 June 2012
There has been much interest in the last few years on materials reinforced with nanometer scale particles. These so-called nanocomposites can exhibit hybrid properties derived from its components. One of the most promising nanocomposites is that based on polymers reinforced with single-layered carbon sheets named graphene. The reason is that graphene can significantly improve the physical properties of the polymeric material once it is completely dispersed in the matrix. In this work nylon/graphene nanocomposites were prepared starting from the synthesis of graphite oxide (GO). Direct oxidation of graphite powder was utilized to produce GO. That is, the oxidation reaction produced graphite layers with functional groups containing oxygen. The aim was to increase the polarity of GO to enable a good dispersion in polar solvents. Then, nylon/graphene nanocomposites were prepared by reducing GO in the presence of nylon. Finally, non-woven membranes, with nanometer sized filaments, of nylon/graphene were electrospun. The morphology and microstructure of the nanocomposites was investigated via electron microscopy and X-ray diffraction.