Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-13T09:17:07.788Z Has data issue: false hasContentIssue false

Electrospinning and Characterization of Novel Opuntia ficus-indica Mucilage Biomembrane

Published online by Cambridge University Press:  18 December 2012

Sylvia W. Thomas*
Affiliation:
University of South Florida, Department of Electrical Engineering
Norma A. Alcantar
Affiliation:
University of South Florida, Department of Chemical & Biomedical Engineering 4202 E. Fowler Ave., ENB118, Tampa, FL 33620, U.S.A.
Yanay Pais
Affiliation:
University of South Florida, Department of Electrical Engineering
Get access

Abstract

Opuntia ficus-indica (Ofi) cactus non-gelling (NE) mucilage nanofibers were electrospun with acetic acid solution and polyvinyl alcohol (PVA) as a polymer. The best fiber coverage was achieved with an aqueous 50% acetic acid solution and 9% low molecular weight PVA at a 70:30 PVA:Mucilage volume ratio. Other volume ratios (30:70 and 50:50) produced beads and other deformities. Fibers were formed with an average diameter of 180nm as measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Favorable electrospinning conditions were used to fabricate a 1 cm x 1 cm Ofi nanofiber biomembrane. Heat flow (W/g) versus temperature peaks ranged from 214 – 222°C, which is comparable to endothermic peak ranges observed for crystalline PVA. This could possibly further indicate some form of crystallinity within the Ofi nanofiber membrane. The electrospun process used precursors that were biodegradable, non-toxic, and sustainable to optimize the mucilage nanofiber formation, which will help enhance the potential performance of the Ofi nanofiber biomembrane in filtration and sensory systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S., Composites Science and Technology, 63, 2223 (2003).CrossRefGoogle Scholar
Burger, C., Hsiao, B.S., and Chu, B., Annual Review of Materials Research, 36, 333 (2006).CrossRefGoogle Scholar
Zhang, G.M., Liu, D.S., Shuang, S.M., and Choi, M. M., Sensors and Actuators B-Chemical, 114, 936 (2006).CrossRefGoogle Scholar
Zhang, Y., Lim, C.T., Ramakrishna, S., and Huang, Z.M., J. Material Science Materials Med., 16, 933 (2005).CrossRefGoogle Scholar
Li, M.Y., Mondrinos, M.J, Gandhi, M.R., Ko, F.K., Weiss, A.S., and Lelkes, P.I., Biomaterials, 26, 5999 (2005).10.1016/j.biomaterials.2005.03.030CrossRefGoogle Scholar
Doshi, J. and Reneker, D.H., Journal of Electrostatics, 35, 151 (1995).10.1016/0304-3886(95)00041-8CrossRefGoogle Scholar
Huang, L., Nagapudi, K., Apkarian, R.P., and Chaikof, E.L., Journal of Biomaterials Science-Polymer Edition, 12, 979 (2001).CrossRefGoogle Scholar
Subbish, T., Bhat, G.S., Tock, R.W., Pararneswaran, S., and Ramkumar, S.S., Journal of Applied Polymer Science, 96, 557 (2005).CrossRefGoogle Scholar
Lu, J.W., Zhu, Y.L., Guo, Z.X., Hu, P., and Yu, J., Polymer, 47, 8026 (2006).CrossRefGoogle Scholar
Bhattarai, N. and Zhang, M.Q., Nanotechnology, 18, 455601 (2007).CrossRefGoogle Scholar
Han, S.O., Son, W.K., Youk, J.H., and Park, W.H., Journal of Applied Polymer Science, 107, 1954 (2008).CrossRefGoogle Scholar
Viswanathan, G., Murugesan, S., Pushparaj, V., Nalamasu, O., Ajayan, P.M. and Linhardt, R.J., Biomacromolecules, 7, 415 (2006).CrossRefGoogle Scholar
Jiang, H.L., Biomacromolecules, 5, 326 (2004); Journal of Biomedical Materials Research Part B – Applied Biomaterials, 79B, 50 (2006).10.1021/bm034345wCrossRefGoogle Scholar
Huang, X.J., Xu, Z.K., Wan, L.S., Innocent, C., and Seta, P., Macromolecular Rapid Communications, 27, 1341 (2006).10.1002/marc.200600266CrossRefGoogle Scholar
Ohkawa, K., Macromolecular Rapid Communications, 25, 1600 (2004); Biomacromolecules, 7, 3291 (2006).CrossRefGoogle Scholar
Schiffman, J.D. and Schauer, C.L., Biomacromolecules, 8, 2665 (2007).10.1021/bm7006983CrossRefGoogle Scholar
Geng, X.Y., Kwon, O.H., and Jang, J.H., Biomaterials, 26, 5427 (2005).CrossRefGoogle Scholar
Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., and Weiss, J., Food Science and Nutrition, 48, 775 (2008).Google Scholar
Homayoni, H., Abdolkarim, S., Ravandi, H., and Valizadeh, M., Carbohydrate Polymers, 77, 656 (2009).CrossRefGoogle Scholar
Hajra, M.G., Mehta, K., and Chase, G.G., Separation and Purification Technology, 30, 79 (2003).CrossRefGoogle Scholar
Cardenas, A., Goycoolea, F.M., and Rinaudo, M., Carbohydrate Polymers, 38, 212 (2008).CrossRefGoogle Scholar
Young, K., Anzalone, A., Pichler, T., Picquart, M., and Alcantar, N., Mat. Res. Soc. Symp. Proc. 930 (2006).CrossRefGoogle Scholar
Young, K., Alcantar, N., and Cunningham, A., Science News, 168, 190 (2005).Google Scholar
Buttice, A. L., Stroot, J.M., Lim, D.V., Stroot, P.G., and Alcantar, N. A., Environmental Science & Technology, 44, 3514 (2010).CrossRefGoogle Scholar
Duan, B., Dong, C.H., Yuan, X.Y., and Yao, K.D., Journal of Biomaterials Science- Polymer Edition, 15, 797 (2004).10.1163/156856204774196171CrossRefGoogle Scholar
Jia, Y., Gong, J., Gu, X., Kim, H., Dong, J., and Shen, X., Carbohydrate Polymers, 67, 403 (2007).CrossRefGoogle Scholar
Haghi, A. K., and Akbari, M., Physica Status Solidi, 204, 1830 (2007).CrossRefGoogle Scholar
Pais, Y., Alcantar, N., Thomas, S., University of South Florida, Department of Electrical Engineering, Master’s Thesis, January (2011).Google Scholar
Kim, G., in Nanofibers; Fabrication of Bio-nanocomposite Nanofibers Mimicking the Mineralized Hard Tissues via Electrospinning Process, edited by Kumar, Ashok (InTech, 2010) p69.Google Scholar