No CrossRef data available.
Article contents
Electrophoretic Deposition of CdSe Nanocrystals for Photovoltaic Applications
Published online by Cambridge University Press: 01 February 2011
Abstract
CdSe nanocrystals chemically linked to nanocrystalline titanium dioxide substrates form a promising material for nanostructured photovoltaic devices. The usual method for attaching the nanocrystals to the titanium dioxide substrate is by means of a linking molecule (such as mercaptopropionic acid) or in-situ growth. In this paper, we report the use of an alternative technique, electrophoretic deposition (EPD), to directly deposit already formed CdSe nanocrystals onto the substrate. In EPD, a voltage is established between two electrodes that are immersed in a solution of nanocrystals. At room temperature, a fraction of the nanocrystals are thermally charged, and these charged nanocrystals migrate to the electrodes and adhere to the surface. A significant advantage of EPD over the use of linking molecules is the speed with which the nanocrystals are deposited: EPD takes only a few minutes, compared to the several hours required for the alternative techniques. Additionally, we have fabricated initial photovoltaic devices based on electrophoretically deposited CdSe nanocrystals on a planar TiO2 thin film.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1031: Symposium H – Nanostructured Solar Cells , 2007 , 1031-H13-25
- Copyright
- Copyright © Materials Research Society 2008