Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:40:52.684Z Has data issue: false hasContentIssue false

Electro-Optical Studies of Vanadium in GaP by Space Charge Spectroscopies

Published online by Cambridge University Press:  22 February 2011

Georges Bremond
Affiliation:
Laboratoire de Physique de la Matière (UA CNRS 358), INSA de Lyon, Bât.502. F-69621 Villeurbanne Cédex, France
G. Guillot
Affiliation:
Laboratoire de Physique de la Matière (UA CNRS 358), INSA de Lyon, Bât.502. F-69621 Villeurbanne Cédex, France
P. Roura
Affiliation:
Catedra d'Electronica, Universitat Barcelona, Diagonal 645, Barcelona 08128, Spain
W. Ulrici
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 0–1086 Berlin, Germany
Get access

Abstract

A complete understanding of the electrical and optical properties of the Vanadium related donor level (VGa3+/VGa4+) in GaP is deduced from a number of different characterization techniques (deep level transient and deep level optical spectroscopies, optical absorption) performed on p-type V doped GaP. The VGa3+/VGa4+ donor level is located at Ev+0.25eV. This assignment is based on the correlation of optical absorption spectra and the photoneutralization cross-section σp°(hv) curve obtained by deep level optical spectroscopy confirming that this technique is very unique for deep level identification in semiconductor materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Clerjaud, B., J.Phys.C: Sol.Stat.Phys. 18, 3615 (1985)CrossRefGoogle Scholar
[2] Kreissl, J. and Ulrici, W., Phys. Stat.Sol. b 136, K133 (1986)CrossRefGoogle Scholar
[3] Ulrici, W., Eaves, L., Friedland, K., Halliday, D.P., Phys.Stat.Sol. b 141, 191 (1987)CrossRefGoogle Scholar
[4] Sahraoui-Tahar, M., Salce, B., Challis, L.J., Buttler, N., Ulrici, W. and Cockayne, B., J.Phys:Condensed Matter 1, 9313 (1989)Google Scholar
[5] Ulrici, W., Kreissl, J., Hayes, D.G., Eaves, L., Friedland, K., Materials Science Forum, Vol 38–41 875 (1989)Google Scholar
[6] Brémond, G., Guillot, G., Nouailhat, A. and Picoli, G., J.Appl.Phys. 5p 2038 (1986)CrossRefGoogle Scholar
[7] Brémond, G., Guillot, G., Roura, P. and Ulrici, W., Semicond.Sci.Technol. 6, 85 (1991)CrossRefGoogle Scholar
[8] Chantre, A., Vincent, G. and Bois, D., Phys Rev B23, 5335( 1981)CrossRefGoogle Scholar
[9] Delerue, C., Lannoo, M., Brémond, G., Guillot, G. and Nouailhat, A., Europhys.Lett. 9, 373 (1989)CrossRefGoogle Scholar
[10] Clerjaud, B., Cote, D., Naud, C. Brémond, G., Guillot, G. and Nouailhat, A., J.Cryst.Growth 83, 194 (1987)CrossRefGoogle Scholar
[11] Langer, J.M., Delerue, C., Lannoo, M. and Heinrich, H., Phys.Rev. B38, 773 (1988)Google Scholar