No CrossRef data available.
Article contents
Electro-Optical Detection of Single Nanoparticles on a Nanopore-Optofluidic Chip
Published online by Cambridge University Press: 30 December 2014
Abstract
A solid-state nanopore was integrated into an optofluidic sensor chip, liquid-core anti-resonant reflecting optical waveguide (ARROW). The solid-state nanopore worked as a smart gate, which simultaneously provided characteristic electrical signals and controlled the entry of single nanoparticles into the liquid-core channel. The subsequent fluorescence detection further identified the nanoparticles by providing optical signals within a specific wavelength range. In this work, correlated electrical and optical detection of single nanoparticles, H1N1 viruses, and λ-DNA molecules was demonstrated. Different types of particles in a mixture were successfully discriminated. Moreover, the flow velocity in the liquid-core channel was extracted with the help of combined analysis of electrical and optical signals. Enhanced electrical sensitivity using a solid-state nanopore with a thin limiting aperture sculpted by SiO2 deposition was also shown.
Keywords
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1720: Symposium D – Materials and Concepts for Biomedical Sensing , 2014 , mrsf14-1720-d09-02
- Copyright
- Copyright © Materials Research Society 2014