Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:35:33.130Z Has data issue: false hasContentIssue false

Electron-Nuclear Double Resonance Study of the Zinc Vacancy in Zinc GERMANIUM PHOSPHIDE (ZnGeP2)

Published online by Cambridge University Press:  10 February 2011

K. T. Stevens
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
S. D. Setzler
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
L. E. Halliburton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
N. C. Fernelius
Affiliation:
Air Force Research Laboratory, WPAFB, Dayton, OH 45433
P. G. Schunemann
Affiliation:
Sanders, A Lockheed Martin Company, Nashua, NH 03061
T. M. Pollak
Affiliation:
Sanders, A Lockheed Martin Company, Nashua, NH 03061
Get access

Abstract

As-grown crystals of ZnGeP2 are highly compensated and contain significant concentrations of donors and acceptors. The dominant acceptor in ZnGeP2 is believed to be the zinc vacancy. This center is paramagnetic in its normal singly ionized state, and gives rise to an electron paramagnetic resonance (EPR) signal characterized by a resolved primary hyperfine interaction with two equivalent phosphorus nuclei adjacent to the vacancy. The present investigation has focused on electron-nuclear double resonance (ENDOR) measurements of additional hyperfine interactions which are not resolved in the regular EPR spectra. Principal values and principal axes directions for four additional phosphorus nuclei are determined from the ENDOR angular dependence. These parameters support the zinc-vacancy assignment for the acceptor and they provide an experimental check of wave functions generated in future computational modeling efforts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barnes, N. P., in Tunable Lasers Handbook, edited by Duarte, F. J. (Academic Press, New York, 1995), Chapter 7, pp. 293348.Google Scholar
2. Pomeranz, L. A., Budni, P. A., Schunemann, P. G., Pollak, T. M., Ketteridge, P. A., and Chicklis, E. P., in OSA Trends in Optics and Photonics, Vol.10, Advanced Solid State Lasers, edited by Pollock, C. R. and Bosenberg, W. R., (Optical Society of America, Washington, DC 1997), pp. 259261.Google Scholar
3. Setzler, S. D., Halliburton, L. E., Giles, N. C., Schunemann, P. G., and Pollak, T. M., in Infrared Applications of Semiconductors - Materials, Processing, and Devices, edited by Manasreh, M. O., Myers, T. H., and Julien, F. H. (Mater. Res. Soc. Proc. 450, Pittsburgh, PA, 1997), pp. 327332.Google Scholar
4. Rakowsky, M. H., Kuhn, W. K., Lauderdale, W. J., Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Schunemann, P. G., Pollak, T. M., Ohmer, M. C., and Hopkins, F. K., Appl. Phys. Lett. 64, 1615 (1994).Google Scholar
5. Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rakowsky, M. H., Schunemann, P. G., and Pollak, T. M., Appl. Phys. Lett. 66, 2670 (1995).Google Scholar
6. Nash, K. J. (private communication).Google Scholar