Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T01:08:26.019Z Has data issue: false hasContentIssue false

Electronic Transport Properties of ZnSe Layers on GaAs

Published online by Cambridge University Press:  28 February 2011

T. Marshall
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
S. Colak
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
H. Van Houten
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
J. Petruzzello
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
B. Greenberg
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
D. Cammack
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
Get access

Abstract

The electronic transport properties of ZnSe layers grown by MBE on GaAs sub- strates are studied by small-signal ac admittance, dc current-voltage, and Hall effect measurements. This work is supplemented by a study of TEM and x-ray rocking curve data. We find that the transport characteristics are strongly affected by the proper- ties of the ZnSe/GaAs interface. From the dc and ac measurements, we determine the total barrier height at the interface of thick (1-6 µm) ZnSe layers on n+-GaAs, and find that it is in general voltage dependent. While some samples are found to have a very high peak mobility (> 10,000cm2 /Vsec), an anomalous reduction in the mobility in a large fraction of the samples is found, and attributed to the presence of non- uniform space charge regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] DePuydt, J. M., Cheng, H., Potts, J. E., Smith, T. L., and Mohapatra, S. K., J. Appl. Phys. 62, 4756 (1987).CrossRefGoogle Scholar
[2] Pots, J. E., Mar, H. A., and Walker, C. T., Final Tech. Prog. Rep., DARPA Cont. No. N00014-85-C-0552.Google Scholar
[3] Tamargo, M. C., deMiguel, J. L., Hwang, D. M., and Farrell, H. H., J. Vac. Sci. Technol. B6, 784 (1988).CrossRefGoogle Scholar
[4] Yao, T., Okada, Y., Matsui, S., Ishida, K., and Fujimoto, I., J. Cryst. Growth 81, 518 (1987).Google Scholar
[5] Giapis, K. P., Lu, D-C., and Jensen, K. F., Appl. Phys. Lett., 54, 353 (1989).CrossRefGoogle Scholar
[6] Shahzad, K., Phys. Rev. B, 38,8309 (1988); K. Shahzad, D. Olego, and D. Cammack, Phys. Rev. B, to be published.Google Scholar
[7] Skromme, B. J., Tamargo, M. C., deMiguel, J. L., and Nahory, R. E., Appl. Phys. Lett., 53, 2217 (1988).Google Scholar
[8] Mohammed, K., Cammack, D., Dalby, R., Newbury, P., Greenberg, B., Petruzzello, J., and Bhargava, R., Appl. Phys. Lett., 55, 37 (1987).CrossRefGoogle Scholar
[9] Petruzzello, J., Greenberg, B., Cammack, D., and Dalby, R., J. Appl. Phys. 63, 2299 (1988).Google Scholar
[10] Colak, S., Marshall, T., and Cammack, D., Solid-State Electronics, to be published.Google Scholar
[11] Opdorp, C. van, Philips Res. Repts. Suppl. No. 10 (1969).Google Scholar
[12] Sze, S. M., Physics of Semiconductor Devices, 2nd Ed., J. Wiley and Sons, New York.Google Scholar
[13] Marshall, T., Colak, S., and Cammack, D., J. Appl. Phys., to be published.Google Scholar
[14] Devlin, S. in Phys. and Chem. of II- VI Compounds, Aven, M. and Prener, J., eds. (North-Holland, Amsterdam, 1967).Google Scholar
[15] Chandra, A., Wood, C., Woodward, D., and Eastman, L., Solid-State Electronics 22, 645 (1979).Google Scholar
[16] Lepkowski, T., DeJule, R., Tien, N., Kim, M., and Stillman, G., J. Appl. Phys. 61, 4808 (1987).Google Scholar
[17] Bartels, W. J., Philips Tech. Rev. 41, 183 (1983-1984).Google Scholar
[18] Park, R. M., Kleinman, J., and Mar, H. A., Proc. SPIE 796, 86 (1987).Google Scholar
[19] Woodall, J. M., Pettit, G. D., Jackson, T. N., Lanza, C., Kavanagh, K. L., and Mayer, J. W., Phys. Rev. Lett. 51, 1783 (1983).Google Scholar
[20] Hartman, H., Mach, R., and Selle, B. in Current Topics in Mat. Sci. Kaldis, E., ed. (North-Holland, Amsterdam, 1982).Google Scholar
[21] Ruda, H. E., J. Appl. Phys. 59, 1220 (1986).CrossRefGoogle Scholar
[22] Blood, P. and Orton, J. W., Acta Electronica 25, 103 (1983).Google Scholar
[23] Weisberg, L. R., J. Appl. Phys. 33, 1817 (1962).Google Scholar
[24] Podor, B., Phys. Rev. B. 26, 2551 (1983).CrossRefGoogle Scholar
[25] Chattopadyay, D., Queisser, H. J. and Stringfellow, G. B., Proc. 15th ICPS, Kyoto, 1980; J. Phys. Soc. Japan 49 (1980) Suppl. A 293.Google Scholar
[26] Houten, H. van, Colak, S., Marshall, T., and Cammack, D., unpublished.Google Scholar
[27] Space charge regions may either affect the mobility by causing additional scattering as in Weisberg's model (see ref. 22), or by causing macroscopic inhomogeneities, leading to an apparent mobility decrease (see E.M.Conwell and M.O.Vassell, Phys Rev. 168,797 (1968)). For the purposes of the present discussion this distinction is irrelevant.Google Scholar
[28] Stutius, W. and Ponce, F. A., J. Appl. Phys. 58, 1548 (1985).Google Scholar
[29] Giapis, K., Lu, D.-C., and Jensen, K., Appl. Phys. Lett. 54, 353 (1989).CrossRefGoogle Scholar