Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:32:20.707Z Has data issue: false hasContentIssue false

Electronic Transport Properties of Graphite Acceptor Compounds

Published online by Cambridge University Press:  15 February 2011

Ian L. Spain
Affiliation:
Department of Physics, Colorado State University, Fort Collins, CO 80523
Kenneth J. Volin
Affiliation:
Department of Physics, Colorado State University, Fort Collins, CO 80523
Get access

Abstract

Calculations of the magnetoresistance of graphite acceptor compounds are made using a tight binding model for the carrier dispersion proposed by Blinowski et al, and measured values of the zero-field resistivity. It is shown that, if a reasonable physical model is used for the mobilities, the magnetoresistance cannot be fitted with two- or three-carrier models. Suggestions for the origin of the magnetoresistance are made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vogel, F. L., J. Mat. Sci. 12, 982 (1977).Google Scholar
2. Vogel, F. L., Foley, G. M., Zeller, C., Falardeau, E., and J. Gan, Mat. Sci. Eng. 31, 261 (1977).CrossRefGoogle Scholar
3. Zeller, C., Pendrys, L. A., and Vogel, F. L., J. Mat. Sci. 14, 2241 (1979).Google Scholar
4. Singhal, S. C. and Kernich, A., Synth. Met. 3, 247 (1981).Google Scholar
5. Thompson, T. E., McCarron, E. M., and Bartlett, N., Synth. Met. 3, 255 (1981).Google Scholar
6. McKee, D. W., Interrante, L. V., and Markiewicz, R. S., Extended Abstracts, American Carbon Society, Philadelphia (1979), p. 276.Google Scholar
7. Bartlett, N., Bianconi, R. N., McQuillan, B. W., Robertson, A. S., and Thompson, A. C., J. Chem. Soc. Chem. Comm. p. 200 (1978).CrossRefGoogle Scholar
8. Weinberger, B. R., Kaufer, J., Heeger, A. J., Fischer, J. E., Moran, M., and Holzwarth, N. A. W., Phys. Rev. Lett. 41, 1417 (1978).CrossRefGoogle Scholar
9. Hanlon, L. R., Falardeau, E. R., and Fischer, J. E., Sol. St. Comm. 24, 377 (1977).CrossRefGoogle Scholar
10. Blinowski, J., Hau, N. H., Rigaux, C., Vieren, J. P., LeToullec, R., Furdin, G., Hérold, A., and Mélin, J., J. Physique 41, 47 (1980).Google Scholar
11. Markiewicz, R. S., Hart, H. R., Interrante, L. V., and Kasper, J. S., Synth. Met. 2, 331 (1981).Google Scholar
12. Tanuma, S., Iya, Y., Takanhashi, O., and Koike, Y., Synth. Metals 2, 341 (1981).CrossRefGoogle Scholar
13. Fischer, J. E., Sol. St. Comm. 40, 93 (1981).Google Scholar
14. Moran, M. J., Fischer, J. E., and Salaneck, W. R., J. Chem. Phys. 73, 629 (1980).Google Scholar
15. Markiewicz, R. S., Kasper, J. S., and Interrante, L. V., Synth. Met. 2, 363 (1981).Google Scholar
16. Wu, T. C., Ph.D. Dissertation, University of Pennsylvania (1980).Google Scholar
17. Blinowski, J. and Rigaux, C., J. Physique 41, 667 (1980).Google Scholar
18. Leung, S. Y. and Dresselhaus, G., Phys. Rev. B24, 3490 (1981).Google Scholar
19. Spain, I. L., Volin, K., Goldberg, H., and Kalnin, I. (unpublished).Google Scholar
20. Spain, I. L., Ubbelohde, A. R., and Young, D. A., Phil. Trans. Roy. Soc. 262, 345 (1967).Google Scholar
21. Holzwarth, N. A. W., Phys. Rev. B 21, 3665 (1980).Google Scholar
22. Dillon, R. O. and Spain, I. L., J. Phys. Chem. Solids 39, 923 (1978).Google Scholar