Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:36:10.826Z Has data issue: false hasContentIssue false

Electronic structure of short-period ZnSe/ZnTe superlattices grown by MOVPE at 300ºC

Published online by Cambridge University Press:  15 February 2011

N. Briot
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
T. Cloitre
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
O. Briot
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
P. Boring
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
B.E. Ponga
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
B. Gil
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
R.L. Aulombard
Affiliation:
Groupe d'Etudes des Semiconducteurs, Univ. Montpellier II, CC 74, Place E.Bataillon, 34095, Montpellier Cedex 5, France
M. Gailhanou
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, IMO, Departement de Physique, 1015 Lausanne, Switzerland
J.M. Sallese
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, IMO, Departement de Physique, 1015 Lausanne, Switzerland
A.C. Jones
Affiliation:
Epichem Ltd., Power Road, Bromborough, Wirral, Merseyside, L62 3QF United Kingdom
Get access

Abstract

The ZnSe-ZnTe combination is a potential candidate for the realisation of visible light-emitting devices. The lattice mismatch between bulk ZnSe and bulk ZnTe is important (∼ 8%). Therefore, their hetero-structures are strained and high quality superlattices will only be grown if having small periods. This prescription can be fulfilled in the case of metal organic vapour phase epitaxy (MOVPE) growth by combining triethylamine dimethyl zinc adduct with di-isopropyl telluride as precursors for the growth of the ZnTe layers. The growth of high quality ZnTe can then be performed at a temperature of 300ºC , close to the best MOVPE-growth temperature for ZnSe (280ºC). Lowering the growth temperature of ZnTe to this value, we could thus obtain sharp interfaces. This work reports on ZnSe-ZnTe superlattices grown on ZnSe and ZnTe buffers deposited on GaAs substrates. We demonstrate that the stokes-shift between the reflectance and photoluminescence features ( ∼ 40 meV ) measured when the thickness of ZnSe layers does not exceed 20 Å, drastically increases for layer thicknesses beyond this critical value. This, we interpret in terms of the onset of plastic relaxation which favours tellurium diffusion in the ZnSe slices. Then photoluminescence spectra broaden ( contributions of trapped-excitons dominate), and observation of free excitons in reflectance become impossible. We have studied in detail the optical properties of the superlattices and compared our findings with the predictions of a multiband envelope function calculation. We show that both zone centre excitons as well as excitons associated with the miniband dispersions (saddle-point excitons) are observed in these superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Davies, J.J., Semicond Sci.Technol. 3, 219 (1988).CrossRefGoogle Scholar
2 Jones, A.C., Semicond.Sci.Technol. 6, A36 (1991).CrossRefGoogle Scholar
3 Cloitre, T. Ph.D thesis, Université Montpellier II, 1991.Google Scholar
4 Rajakarunanayake, Y., Miles, R.H., Wu, G.Y. and McGill, T.C., Phys.Rev. B 37 10212 (1988).CrossRefGoogle Scholar
5 Zhang, F.C., Luo, H., Dai, N., Samarth, N., Dobrowolska, M. and Furdyna, J.K. Phys.Rev. B 47; 3806 (1993).CrossRefGoogle Scholar
6 Duggan, G., Proc.SPIE 1283, 206 (1990) and references therein.CrossRefGoogle Scholar
7 Voisin, P., Bastard, G. and Voos, M., Phys.Rev. B 39, 3173 (1989).Google Scholar
8 Jouanin, C., Jancu, J.M., Bertho, D., Boring, P. and Gil, B. Phys.Rev. B 46 4988 (1992).CrossRefGoogle Scholar
9 Smith, D.L. and Mailhiot, C., Rev.Mod.Phys. 62, 173 (1990).CrossRefGoogle Scholar
10 Fu, Q., Lee, D., Nurmikko, A.V., Kolodziejsky, L.A. and Gunshor, R.L. Phys.Rev. B 39, 3173 (1989).CrossRefGoogle Scholar