Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:35:21.209Z Has data issue: false hasContentIssue false

Electronic Structure of Native Point Defects in Zngep2

Published online by Cambridge University Press:  01 February 2011

Xiaoshu Jiang
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106–7079
M. S. Miao
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106–7079
Walter R. L. Lambrecht
Affiliation:
Department of Phyiscs, Case Western Reserve University, Cleveland, Oh 44106–7079
Get access

Abstract

First-principles calculations are presented for various native point defects in ZnGeP2 us-ing a full-potential linearized muffin-tin orbital method in the local density approximation to density functional theory. Under Zn-poor conditions, the lowest Gibbs energy defects are found to be the Gezn antisite and Vzn. The Vae is found to have high energy of formation under any chemical potential conditions and is unstable towards formation of a Vzn and ZnGe pair. It is shown that the VZn cannot account for the ALI EPR spectrum commonly associated with this vacancy and an alternative model consisting of a VznGeZnVzn is tentatively proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “Emergence of Chalcopyrites as Nonlinear Optical Materials,” MRS Bulletin, Volume 23, No. 7 (1998), Guest Editors: M. C. Ohmer and R. Pandey.Google Scholar
2. Rakowsky, M. H., Kuhn, W. K., Lauderdale, W. J., Halliburton, L. E., Edwards, G. J., Scripskick, M. P., Schunemann, P. G., Poliak, T. M., Ohmer, M. C., and Hopkins, F. K., Appl. Phys. Lett. 64, 1615 (1984).Google Scholar
3. Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rakowsky, M. H., Schunemann, P. G., and Poliak, T. M., Appl. Phys. lett. 66, 2670 (1995),Google Scholar
4. Stevens, K. T., Setzier, S. D., Halliburton, L. E., Fernelius, N. C., Schunemann, P. G., and Poliak, T. M., Mater. Res. Symp. Proc. 484, 549 (1998).Google Scholar
5. Giles, N. C., Halliburton, L. E., Schunemann, , and Poliak, T. M., Appl. Phys. Lett. 66, 1758 (1995).Google Scholar
6. Giles, N. C., Bai, L., Chirila, M., Garces, N. Y., Stevens, K. T., Schunemann, P. G., Setzler, S. D., and Poliak, T. M., J. Appl. Phys. 93, 8975 (2003).Google Scholar
7. Gehlhoff, W., Pereira, R. N., Azamat, D., Hoffmann, A., and Dietz, N., Physica B 308–310, 1015 (2001).Google Scholar
8. Setzler, S. D., Giles, N. C., Halliburton, L. E., Schunemann, P. G., and Poliak, T. M., Appl. Phys. Lett. 74, 1218 (1999).Google Scholar
9. Gehlhoff, W., Azamat, D. and Hoffmann, A., Phys. Stat. Solidi (b) 235, 151 (2003).Google Scholar
10. Gehlhoff, W., Azamat, D., Hoffmann, A., and Dietz, N., J. Phys. Chem. Solids 64, 1923 (2003).Google Scholar
11. Methfessel, M., van Schilfgaarde, M., and Casali, R. A., in Electronic Structure and Physical Properties of Solids, The uses of the LMTO Method, edited by Hugues Dreyssé, Springer Lecture Notes, Workshop Mont Saint Odille, France, 1998, (Springer, Berlin, 2000), p. 114147 Google Scholar
12. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965)Google Scholar
13. Makov, G. and Payne, M. C., Phys. Rev. B 51, 40147–4022 (1995).Google Scholar
14. Blöchl, P. E., Phys. Rev. B 62, 61586179 (2000)Google Scholar
15. Zhang, S. B., Wei, S.-H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B 57, 9642 (1998).Google Scholar