Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T13:14:07.037Z Has data issue: false hasContentIssue false

Electronic Structure of Iron Substituted Lithium Intercalated TaS2

Published online by Cambridge University Press:  15 February 2011

M. Eibschütz
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
D. W. Murphy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
F. J. DiSalvo
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have used the 57Fe Mössbauer effect to study the electronic spin configuration of Fe substituted in the layer compound LixTal-yFeyS2(0≤x≤l;0≤y≤0.1). The Mössbauer effect results show that the Fe is localized and in Fe2+ valence state but the electronic configuration depends on the lithium concentration. At room temperature the isomer shift of Fe2+ increases from 0.56 mm/s for x = 0 (no Li) to 0.77 mm/s for x = .86 (at y = 0.05). The isomer shift results reflect the changes in the electronic configuration of the host from Ta4+(5d1) to Ta3+(5d2) and an increase in ionicity as the lithium content increases from 0 to 1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Science 192, 1126 (1976).10.1126/science.192.4244.1126Google Scholar
2. Murphy, D. W. and Trumbore, F. A., J. Cryst. Growth 39, 185 (1977).10.1016/0022-0248(77)90165-8Google Scholar
3. Whithingham, M. S. Prog. Sol. State Chemistry 12, 1 (1978).Google Scholar
4. Basu, S. and Worrell, W. L. in: Electrode Materials and Processes for Energy Conversion and Storage, McIntyre, J. D. E., Srinivasan, S. and Will, F. G., eds. (The Electrochemical Society, Princeton, New Jersey 1977) p, 861.Google Scholar
5. Fleming, R. M. and Coleman, R. V., Phys. Rev. Lett. 34, 1502 (1975).10.1103/PhysRevLett.34.1502Google Scholar
6. Eibschütz, M. and DiSalvo, F. J., Phys. Rev. Lett. 36, 104 (1975).10.1103/PhysRevLett.36.104Google Scholar
7. Eibschütz, M., Lines, M. E. and DiSalvo, F. J. Phys. Rev. B 15, 103 (1977).10.1103/PhysRevB.15.103CrossRefGoogle Scholar
8. Wilson, J. A., DiSalvo, F. J. and Mahajan, S. Adv. Phys. 24, 117 (1975).10.1080/00018737500101391Google Scholar
9. DiSalvo, F. J., Wilson, J. A., Bagley, B. G. and Waszczak, J. V. Phys. Rev. B 12, 464 (1975).Google Scholar
10. Eibschütz, M. in: Symposium on Recent Chemical Applications of Mössbauer Spectroscopy, March 1980, J. Am. Chem. Soc. Conf. Proceedings (in press).Google Scholar
11. Hafner, S. and Kalvius, M., Kristallogr, Z. 123, 443 (1966).Google Scholar
12. Eibschütz, M., Hermon, E. and Shtrikman, S., J. Phys. Chem. Solids 28, 1963 (1967).10.1016/0022-3697(67)90134-5Google Scholar
13. Shannon, R. D. and Prewitt, C. T., Acta Cryst. B25, 946 (1969).Google Scholar
14. Murphy, D. W., DiSalvo, F. J., Hull, G. W. and Waszczak, J. W., Inorg. Chem. 15, 17 (1976).10.1021/ic50155a005Google Scholar