Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:40:01.557Z Has data issue: false hasContentIssue false

Electronic Structure of Compressed Americium Metal

Published online by Cambridge University Press:  22 May 2012

Jindrich Kolorenc
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic
Alexander B. Shick
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany
Roberto Caciuffo
Affiliation:
European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany
Get access

Abstract

We report a theoretical investigation of changes in the electronic structure of americium metal due to applied pressure. We employ a variant of the LDA+DMFT method that takes into account not only the correlations among the 5f electrons, but also the feedback of these correlations on the rest of the system by means of an appropriate adjustment of the electronic charge density. We observe only minor modification of the electronic structure in the compressed lattice, which is in accord with recent resonant x-ray spectroscopy experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Moore, K. and van der Laan, G., Rev. Mod. Phys. 81 235 (2009).Google Scholar
2. Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Méresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).Google Scholar
3. Savrasov, S. Y., Haule, K., and Kotliar, G., Phys. Rev. Lett. 96, 036404 (2006).Google Scholar
4. Heathman, S., Rueff, J.-P., Simonelli, L., Denecke, M. A., Griveau, J.-c., Caciuffo, R., and Lander, G. H., Phys. Rev. B 82, 201103(R) (2010).Google Scholar
5. Annese, E., Barla, A., Dallera, C., Lapertot, G., Sanchez, J.-P., and Vankó, G., Phys. Rev. B 73, 140409(R) (2006).Google Scholar
6. Per Söderlind, K. Moore, T., Landa, A., Sadigh, B., and Bradley, J. A., Phys. Rev. B 84, 075138 (2011)Google Scholar
7. Shick, A. B., Kolorenc, J., Lichtenstein, A. I., and Havela, L., Phys. Rev. B 80, 085106 (2009).Google Scholar
8. Lichtenstein, A. I. and Katsnelson, M. L., Phys. Rev. B 67, 6884 (1998).Google Scholar
9. Geroges, A., Kotliar, G., Krauth, W., and Rozenberg, M., Rev.. Mod. Phys. 81, 235 (1996).Google Scholar
10. Shick, A. B., Lichtenstein, A. I., and Pickett, W. E., Phys. Rev. B 60, 10763 (1999).Google Scholar
11. Solovuev, I. V., Dedereichs, P. H., and Anisimov, V. I., Phys. Rev. B 50, 16861 (1994).Google Scholar
12. Hubbard, J., Proc. Roy. Soc. A 276, 238 (1963).Google Scholar
13. Kolorenc, J., Shick, A. B., Havela, L., and Lichtenstein, A. I., Mater. Res. Soc. Symp. Proc. 1264, z0902 (2010).Google Scholar
14. Thundstrom, P., Di Marco, I., and Eriksson, O., arXiv: 1202.3975 (2012).Google Scholar
15. Sakurai, J. J., Advanced Quantum Mechanics, Addison-Wesley, 1967.Google Scholar
16. Jiménez-Mier, J., van Ek, J., Ederer, D. L., Callout, T. A., Jia, J. J., Carlisle, J., Terminello, L., Asfaw, A., and Perera, R. C., Phys. Rev. B 59, 2649 (1999).Google Scholar
17. Gouder, T., Oppeneer, P. M., Huber, F., Wastin, F., and Rebizant, J., Phys. Rev. B 72, 115122 (2005).Google Scholar
18. Svane, A., Solid State Commun. 140, 364 (2006).Google Scholar