Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:42:22.827Z Has data issue: false hasContentIssue false

The Electronic Structure of a-Si,Ge:H Alloys

Published online by Cambridge University Press:  16 February 2011

F. Zhong
Affiliation:
Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
J.D. Cohen
Affiliation:
Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
J. Yang
Affiliation:
United Solar Systems Corp., 1100 W. Maple Rd., Troy, MI 48084
S. Guha
Affiliation:
United Solar Systems Corp., 1100 W. Maple Rd., Troy, MI 48084
Get access

Abstract

We have carried out a detailed study of the energy distribution of deep defects for high quality glow discharge a-Si,Ge:H alloys using both thermal emission and optical Methods: drive-level capacitance profiling, transient photocapacitance and photocurrent plus modulation photocurrent spectroscopy. Four distinct bands of transitions involving defect states have been identified: two associated with thermal transitions, and the other two related to optical transitions. We have, for the first time, observed a negative signal in the photocapacitance spectra at photon energies near 1.2eV. This striking aspect verifies the presence of a distinct defect band above Ep from which electron thermal emission is greatly suppressed. Our Measurements also disclose a fairly narrow defect band below the Fermi level which contrasts with the defect properties observed in a-Si:H. Time resolved photocapacitance spectra indicate that this defect band exhibits configuration relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paul, W., Chen, J.H., Liu, E.Z., Wetsel, A.E. and Wickboldt, P., J. Non-Cryst. Solids 164–166, 1 (1993).Google Scholar
2. Unold, T. and Cohen, J.D., J. Non-Cryst. Solid 164–166, 23 (1993).Google Scholar
3. Xu, X., Yang, J., and Guha, S., Appl. Phys. Lett. 62, 1399 (1993)CrossRefGoogle Scholar
4. Guha, S., Payson, J.S., Agarwal, S.C., and Ovshinsky, S.R., J. Non-Cryst. Solids 97–98, 1455 (1988)Google Scholar
5. Cohen, J.D., in Semiconductors and Semimetals, Vol 21C, ed. by Pankove, J. (Academic, New York, 1984), p. 1.Google Scholar
6. Michelson, C. E., Gelatos, A. V., and Cohen, J. D., Appl. Phys. Lett. 47, 412 (1985)CrossRefGoogle Scholar
7. Zhong, F. and Cohen, J.D., Mat. Res. Soc. Symp. Proc. 258, 813 (1992)CrossRefGoogle Scholar
8. Zhong, F. and Cohen, J.D., Mat. Res. Soc. Symp. Proc. 297, 735 (1993)Google Scholar
9. Cohen, J.D., Unold, T., Gelatos, A.V., and Fortmann, C.M., J. Non-Cryst. Solids, 141, 142 (1992)Google Scholar
10. Gelatos, A.V., Cohen, J.D., and Harbison, J.P., Appl. Phys. Lett., 49 722 (1986)Google Scholar
11. Cohen, J. D., Leen, T.M., and Rasmussen, R.J., Phys. Rev. Lett. 69, 3358 (1992)Google Scholar
12. Zhong, F. and Cohen, J.D., Phys. Rev. Lett. 71, 597 (1993)Google Scholar
13. Branz, H.M. and Schiff, E.A., Phys. Rev. B 48, 8667 (1993)CrossRefGoogle Scholar
14. Essick, J.M. and Cohen, J.D., Phys. Rev. Lett. 64, 3062 (1990)Google Scholar
15. Graf, W., Wolf, M., Leihkamm, K., Ristein, J., Ley, L., J. Non-Cryst. Solid 164–166, 195 (1993)Google Scholar