Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:50:57.041Z Has data issue: false hasContentIssue false

Electronic Structure and Thermoelectric Properties of AxMo3Sb5Te2

Published online by Cambridge University Press:  01 February 2011

Navid Soheilnia
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 E-mail: [email protected]
Holger Kleinke
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 E-mail: [email protected]
Get access

Abstract

Mo3Sb7 may be chemically modified to become semiconducting by replacing two Sb atoms with two Te atoms (per formula unit). This material may be an attractive candidate for the thermoelectric energy conversion, as its thermal conductivity may be lowered by creating the rattling effect upon intercalation of small cations, and its band structure may be tailored, i.e. the band gap size modified. The higher the Te content and the higher the cation amount, the smaller is the band gap, which can virtually reach any value below 0.5 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kleinke, H., Chem. Commun. (Cambridge) (1998) 2219.Google Scholar
[2] Kleinke, H., J. Mater. Chem. 9 (1999) 2703.Google Scholar
[3] Kleinke, H., J. Am. Chem. Soc. 122 (2000) 853.Google Scholar
[4] Bobev, S., Kleinke, H., Chem. Mater. 15 (2003) 3523.Google Scholar
[5] Brown, A., Nature (London) 206 (1965) 502.Google Scholar
[6] Rowe, D. M.. CRC Handbook of Thermoelectrics. CRC Press, Boca Raton, FL, 1995.Google Scholar
[7] Sales, B. C., Mandrus, D., Williams, R. K., Science (Washington D. C.) 272 (1996) 1325.Google Scholar
[8] Katsuyama, S., Shichijo, Y., Ito, M., Majima, K., Nagai, H., J. Appl. Phys. 84 (1998) 6708.Google Scholar
[9] Fornari, M., Singh, D. J., Phys. Rev. B 59 (1999) 9722.Google Scholar
[10] Nolas, G. S., Morelli, D. T., Tritt, T. M., Annu. Rev. Mat. Science 29 (1999) 89.Google Scholar
[11] Dilley, N. R., Bauer, E. D., Maple, M. B., Dordevic, S., Basov, D. N., Freibert, F., Darling, T. W., Migliori, A., Chakoumakos, B. C., Sales, B. C., Phys. Rev. B 61 (2000) 4608.Google Scholar
[12] Kitagawa, H., Hasaka, M., Morimura, T., Nakashima, H., Kondo, S. I., Mater. Res. Bull. 35 (2000) 185.Google Scholar
[13] Takizawa, H., Ito, M., Uheda, K., Endo, T., J. Cer. Soc. Jpn. 108 (2000) 530.Google Scholar
[14] Dilley, N. R., Bauer, E. D., Maple, M. B., Sales, B. C., J. Appl. Phys. 88 (2000) 1948.Google Scholar
[15] Dyck, J. S., Chen, W., Uher, C., Chen, L., Tang, X., Hirai, T., J. Appl. Phys. 91 (2002) 3698.Google Scholar
[16] Slack, G. A., In CRC Handbook of Thermoelectrics, ed. Rowe, D. M.. CRC Press, Boca Raton, FL, 1995, pp. 407.Google Scholar
[17] Slack, G. A., Mat. Res. Soc. Symp. Proc. 478 (1997) 47.Google Scholar
[18] Singh, D. J., Semicond. Semimet. 70 (2001) 125.Google Scholar
[19] Young, D. P., Khalifah, P., Cava, R. J., Ramirez, A. P., J. Appl. Phys. 87 (2000) 317.Google Scholar
[20] Xia, Y., Bhattacharya, S., Ponnambalam, V., Pope, A. L., Poon, S. J., Tritt, T. M., J. Appl. Phys. 88 (2000) 1952.Google Scholar
[21] Bhattacharya, S., Pope, A. L., Littleton, R. T. I., Tritt, T. M., Ponnambalam, V., Xia, Y., Poon, S. J., Appl. Phys. Lett. 77 (2000) 2476.Google Scholar
[22] Shen, Q., Zhang, L., Chen, L., Goto, T., Hirai, T., J. Mater. Science Lett. 20 (2001) 2197.Google Scholar
[23] Shen, Q., Chen, L., Goto, T., Hirai, T., Yang, J., Meisner, G. P., Uher, C., Appl. Phys. Lett. 79 (2001) 4165.Google Scholar
[24] Blake, N. P., Mollnitz, L., Kresse, G., Metiu, H., J. Chem. Phys. 111 (1999) 3133.Google Scholar
[25] Chen, F., Stokes, K. L., Nolas, G. S., J. Phys. Chem. Solids 63 (2002) 827.Google Scholar
[26] Bentien, A., Iversen, B. B., Bryan, J. D., Stucky, G. D., Palmqvist, A. E. C., Schultz, A. J., Henning, R. W., J. Appl. Phys. 91 (2002) 5694.Google Scholar
[27] Kitagawa, J., Sasakawa, T., Suemitsu, T., Takabatake, T., Ishikawa, M., J. Phys. Soc. Jpn. 71 (2002) 1222.Google Scholar
[28] Kanatzidis, M. G., McCarthy, T. J., Tanzer, T. A., Chen, L.-H., Iordanidis, L., Hogan, T., Kannewurf, C.R., Uher, C., Chen, B., Chem. Mater. 8 (1996) 1465.Google Scholar
[29] Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G., Science (Washington D. C.) 287 (2000) 1024.Google Scholar
[30] Hsu, K.-F., Chung, D.-Y., Lal, S., Mrotzek, A., Kyratsi, T., Hogan, T., Kanatzidis, M. G., J. Am. Chem. Soc. 124 (2002) 2410.Google Scholar
[31] Kyratsi, T., Dyck, J. S., Chen, W., Chung, D.-Y., Uher, C., Paraskevopoulos, K. M., Kanatzidis, M. G., J. Appl. Phys. 92 (2002) 965.Google Scholar
[32] Chung, D.-Y., Jobic, S., Hogan, T., Kannewurf, C. R., Brec, R., Rouxel, J., Kanatzidis, M. G., J. Am. Chem. Soc. 119 (1997) 2505.Google Scholar
[33] Dashjav, E., Szczepenowska, A., Kleinke, H., J. Mater. Chem. 12 (2002) 345.Google Scholar
[34] Dashjav, E., Kleinke, H., Mat. Res. Soc. Symp. Proc. 730 (2002) 131.Google Scholar
[35] Andersen, O. K., Phys. Rev. B 12 (1975) 3060.Google Scholar
[36] Skriver, H. L.. The LMTO Method. Springer, Berlin, 1984.Google Scholar
[37] Hedin, L., Lundqvist, B. I., J. Phys. C 4 (1971) 2064.Google Scholar
[38] Blöchl, P. E., Jepsen, O., Andersen, O. K., Phys. Rev. B 49 (1994) 16223.Google Scholar
[39] Soheilnia, N., Dashjav, E., Kleinke, H., Can. J. Chem. 81 (2003) 1157.Google Scholar
[40] Sofo, J. O., Mahan, G. D., Phys. Rev. B 49 (1994) 4565.Google Scholar