Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:25:09.102Z Has data issue: false hasContentIssue false

Electronic Structure and Hyperfine Parameters for Hydrogen and Muonium in Silicon

Published online by Cambridge University Press:  25 February 2011

Chris G. Van De Walle*
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor, NY 10510
Get access

Abstract

First-principles spin-density-functional calculations are used to evaluate hyperfine and superhyperfine parameters for hydrogen and muonium at various sites in the Si lattice. The results can be directly compared with values from muon-spin-rotation experiments, leading to an unambiguous identification of “anomalous muonium” with the bond-center site. The agreement found in this case instills confidence in the general use of spin-density-functional calculations for predicting hyperfine parameters of defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987) and references therein.Google Scholar
2 Cox, S. F. J. and Symons, M. C. R., Chem. Phys. Lett. 126, 516 (1986).Google Scholar
3 Estreicher, S., Phys. Rev. B 36, 9122 (1987).Google Scholar
4 Deák, P., Snyder, L. C., and Corbett, J. W., Phys. Rev. B 37, 6887 (1988).Google Scholar
5 DeLeo, G. G., Dorogi, M. J., and Fowler, W. B., Phys. Rev. B 38, 7520 (1988).Google Scholar
6 Sahoo, N., Mishra, K. C., and Das, T. P., Phys. Rev. Lett. 55, 1506 (1985); N. Sahoo, S. B. Sulaiman, K. C. Mishra, and T. P. Das, Phys. Rev. B 39, 13389 (1989).Google Scholar
7 Van de Walle, C. G., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 60, 2761 (1988).Google Scholar
8 Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
9 Patterson, B. D., Rev. Mod. Phys. 60, 69 (1988).Google Scholar
10 Kiefl, R. F., Celio, M., Estle, T. L., Kreitzman, S. R., Luke, G. M., Riseman, T. M., and Ansaldo, E. J., Phys. Rev. Lett. 60, 224 (1988).Google Scholar
11 Gordeev, V. A., Gorelkinskii, Yu. V., Konopleva, R. F., Nevinnyi, N. N., Obukhov, Yu. V., and Firsov, V. G. (unpublished); Yu. V. Gorelkinskii and N. N. Nevinnyi, Pis’ma Zh. Tekh. Fiz. 13, 105 (1987) [Sov. Tech. Phys. Lett. 13, 45 (1987)].Google Scholar
12 Kiefl, R. F., Brewer, J. H., Kreitzmann, S. R., Luke, G. M., Riseman, T. M., Estle, T. L., Celio, M., and Ansaldo, E. J., in Proceedings of the 15th International Conference on Defects in Semiconductors, Budapest, Hungary, 22–26 August 1988 (Trans Tech Publications, Switzerland).Google Scholar
13 Watkins, G., in Proceedings of the 15th International Conference on Defects in Semiconductors, Budapest, Hungary, 1988 (Trans Tech Publications, Switzerland).Google Scholar
14 Beck, R., Meier, P. F., and Schenck, A., Z. Physik B 22, 109 (1975); the formulas were taken from this reference, except that SI units are used here (instead of atomic units, where µo/4π=l).Google Scholar
15 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965); L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971); U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).Google Scholar
16 Hamann, D. R., Schlüter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
17 The notation (E 1; E 2) means that plane waves with kinetic energy up to E 2 Ry are included in the expansions of wave functions and potentials; waves with kinetic energy up to E 1 Ry are included in an exact diagonalization of the Hamiltonian matrix, while those with kinetic energy between E 1 and E 2 Ry are included in second-order Löwdin perturbation theory [P. O. Löwdin, J. Chem. Phys. 19, 1396 (1951)]. I consistently choose E 2 = 2E 1.Google Scholar
18 Kiefl, R. F. and Estle, T. L., to be published in Hydrogen in Semiconductors, edited by Pankove, J. I. and Johnson, N. M., (Academic Press).Google Scholar
19 Morton, J. R. and Preston, K. F., J. Magn. Reson. 30, 577 (1978).Google Scholar