Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:57:53.667Z Has data issue: false hasContentIssue false

The Electronic Structure and Atomic Symmetry of The Oxygen Donor in Silicon

Published online by Cambridge University Press:  28 February 2011

Michael Stavola
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Keon M. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The infrared spectrum of oxygen donor complexes in silicon under uniaxial stress has been examined for the neutral and singly ionized charge states. Our results are consistent with an effective mass-like ground state wave function that is constructed from a single pair of conduction band valleys for both charge states. A thermal ionization experiment in which the stress split components of the ground state are monitored by the absorption of polarized light confirm this interpretation and provide correlation with DLTS and EPR results. Additional small splittings, due to deviations from effective mass theory, show that the electronic wave function of the oxygen donor is distorted by an extended “central cell” with C2v symmetry. Previously observed splittings of 1snp ± transitions for the singly ionized charge state at zero stress are interpreted in terms of the effect of the anisotropic oxygen donor structure upon excited state wave functions constructed from the single pair of conduction band valleys

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fuller, C. S., Ditzenberger, J. A., Hannay, N. B. and Buehler, E., Phys. Rev. 96, 833 (1954).Google Scholar
2. Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112, 1546 (1958).Google Scholar
3. Wruck, D. and Gaworzewski, P., Phys. Status Solidi (a) 56, 557 (1979).Google Scholar
4. Bean, A. R. and Newman, R. C., J. Phys. Chem. Solids 33, 255 (1972).Google Scholar
5. Oeder, R. and Wagner, P. in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J. W. (North Holland, New York, 1983), p. 171.Google Scholar
6. Pajot, B., Compain, H., Leroneille, J., and Clerjaud, B., Physica 117B, 110 (1983).Google Scholar
7. Suezawa, M. and Sumino, K., Materials Lett. 2, 85 (1983).Google Scholar
8. Muller, S. N., Sprenger, M., Sieverts, E. G., and Ammerlaan, C. A. J., Solid State Commun. 25, 987 (1978).Google Scholar
9. Lee, K. M., Watkins, G. D., and Trombetta, J., in Microscopic Identification of Electronic Defects in Semiconductor, edited by Johnson, N. M., Bishop, S. G., and Watkins, G. D. (Materials Research Soc., Pittsburgh, Penn., 1985), p. 263.Google Scholar
10. Kimerling, L. C. and Benton, J. L., Appl. Phys. Lett. 39, 410 (1981).Google Scholar
11. Farmer, J. W., Meese, J. M., Henry, P. M., and Lamp, C. D. in Proceedings, of the 13th Int. Conf. on Defects in Semiconductors edited by Kimerling, L. C. and Parsey, J. M. Jr., (The Metallurgical Soc. of AIME, New York, 1985), p. 639.Google Scholar
12. Benton, J. L., Lee, K. M., Freeland, P. E., and Kimerling, L. C., in Ref. 11, p. 647.Google Scholar
13. Michel, J., Niklas, J. R., and Spaeth, J.-M., this volume.Google Scholar
14. Bourret, A., in Ref. 11, p. 129.Google Scholar
15. Oehrlein, G. S. and Corbett, J. W., in Ref. 5, p. 107.Google Scholar
16. Kimerling, L. C., this volume.Google Scholar
17. Stavola, M., Lee, K. M., Nabity, J. C., Freeland, P. E., and Kimerling, L. C., Phys. Rev. Lett. 54, 2639 (1985).Google Scholar
18. Stavola, M., Lee, K. M., Nabity, J. C., Freeland, P. E. and Kimerling, L. C., in Ref. 9, p. 257.Google Scholar
19. Kohn, W. in Solid State Physics, vol.5, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1957) p. 257.Google Scholar
20. Ramdas, A. K. and Rodriguez, S., Rep. Prog. Phys. 44, 1297 (1981).Google Scholar
21. Aggarwal, R. L. and Ramdas, A. K., Phys. Rev. 140, A1246 (1965).Google Scholar
22. Ho, L. T. and Ramdas, A. K., Phys. Rev. B 5, 462 (1972).Google Scholar
23. Tekippe, V. J., Chandrasekhar, H. R., Fisher, P. and Ramdas, A. K., Phys. Rev. B 6, 2348 (1972).Google Scholar
24. Wagner, P. and Holm, C., in Ref. 11, p. 677. These authors comment on the absence of stress induced splittings for [001] stress.Google Scholar
25. G. D. Watkins suggested the similarity to the interstitial Li ls (T 2) ground state at the 13th Int. Conf. on Defects in Semiconductors, Coronado, CA. The Li ground state is described in, Watkins, G. D. and Ham, F. S., Phys. Rev. B 1, 4071 (1970).CrossRefGoogle Scholar
26. Kaplyanskii, A. A., Soy. Phys. - Opt. Spectrosc. 16, 329 (1964).Google Scholar