Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:22:28.239Z Has data issue: false hasContentIssue false

Electronic Properties of Silicon - M Binary Clusters (M = C & Na)

Published online by Cambridge University Press:  28 February 2011

A. Nakajima
Affiliation:
RIKEN, The Institute of Physical and Chemical Research, Wako, 351-01, JAPAN Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN
K. Nakao
Affiliation:
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN
M. Gomei
Affiliation:
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN
R. Kishi
Affiliation:
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN
S. Iwata
Affiliation:
Institute for Molecular Science, Myodaiji, Okazaki 444, JAPAN
K. Kaya
Affiliation:
RIKEN, The Institute of Physical and Chemical Research, Wako, 351-01, JAPAN Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN
Get access

Abstract

Electronic properties of silicon-carbon and silicon-sodium binary clusters, produced by laser vaporization, were investigated by photoelectron spectroscopic or photoionization spectroscopic method. The photoelectron spectra of the C1Sim-1- clusters are similar to those of pure Sim- clusters in the peak positions and their envelopes, which is attributed to the similar electronic structure of Si and C atoms, leading to a similar geometry. In contrast, the similarity in the photoelectron spectra is not observed between Cn- and Cn-1Si1 clusters, which is attributed to a change in their geometry; from chain to ring.

The ionization energies (Ei) of the SinNam clusters (l≤n≤15) were determined from the threshold energy of their ionization efficiency curves. The clear parallelism between the ionization energy of SinNa and the electron affinity (EA) of Sin is found; there are three local minima at n=4, 7 and 10. This implies the facts that (1) the structure of the SinNa clusters keeps the frame of the corresponding Sin cluster unchanged and that (2) the parentage of singly occupied molecular orbital (SOMO) of SinNa is the LUMO of Sin. Furthermore, the EAs of SinNa (4≤n≤7) were determined from the threshold energy in the photoelectron spectra of SinNa". When the EAs of SinNa are compared with those of Sin, the EAs decrease at n=4-6, but the EA increases at n=7. The results of ab initio calculation show that the Na atom is bound by two Si atoms (bridge site) at n=4-6, whereas it is bound by one Si atom (apex site) at n=7.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jarrold, M. F., Science, 252,1085 (1991).Google Scholar
2 Brown, W. L., Freeman, R. R., Raghavachari, K., and Schluter, M., Science, 235, 860 (1987).Google Scholar
3 Yang, S., Taylor, K. J., Craycraft, M. J., Conceicao, J., Pettiette, C., Cheshnovsky, O., and Smalley, R. E., Chem. Phys. Lett., 144,431 (1988).Google Scholar
4 Cheshnovsky, O., Yang, S. H., Pettiette, C. L., Craycraft, M. J., Liu, Y., and Smalley, R. E., Chem. Phys. Lett. 138,119 (1987)Google Scholar
5 Arnold, D. W., Bradforth, S. E., Kitsopoulos, T. N., and Neumark, D. M., J. Chem. Phys., 95, 8573 (1991).Google Scholar
6 Honea, E. C., Ogura, A., Murray, C. A., Raghavachari, K., Sprenger, W. O., Jarrold, M. F., and Brown, W. L., Nature, 366, 42 (1993).Google Scholar
7 Fuke, K., Tsukamoto, K., Misaizu, F., and Sanekata, M., J. Chem. Phys., 99,7807 (1993).Google Scholar
8 (a) Raghavachari, K. and Logovinsky, V., Phys. Rev. Lett. 55,2853 (1985); (b) K. Raghavachari, J. Chem. Phys., 84, 5672 (1986); (c) K. Raghavachari and C. M. Rohlfing, J. Chem. Phys., 89,2219 (1988); 94, 3670, (1991).Google Scholar
9 Nakajima, A., Hoshino, K., Naganuma, T., Sone, Y., Kaya, K., J. Chem. Phys. 95,7061 1991.Google Scholar
10 Nakajima, A., Taguwa, T., Hoshino, K., Sugioka, T., Naganuma, T., Ono, F., Watanabe, K., Nakao, K., Konishi, Y., Kishi, R., and Kaya, K., Chem. Phys. Lett. 214, 22 (1993).Google Scholar
11 Hotop, H. and Lineberger, W. C., J. Phys. Chem. Ref. Data 4, 539 (1975).Google Scholar
12 Esaulov, V. A., Ann. Phys. Fr. 11,493 (1986).Google Scholar
13 Kishi, R., Nakajima, A., Iwata, S., Kaya, K., Chem. Phys. Lett. 224,200 (1994).Google Scholar
14 Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Jensen, J. H., Koseki, S., Gordon, M. S., Nguyen, K. A., Windus, T. L., and Elbert, S. T., QCPE Bulletin, 10,52 (1990).Google Scholar
15 Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Jhonson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J., Stewart, J. J. P. and Pople, J. A., Gaussian92, Revision E. 2 (Gaussian, Inc., Pittsburgh PA, 1992).Google Scholar
16 Arnold, C. C. and Neumark, D. M., J. Chem. Phys., 99,3353 (1993).Google Scholar
17 Presilla-Marquez, J. D. and Graham, W. R. M., J. Chem. Phys. 96,6509 (1992).Google Scholar
18 Rittby, C. M. L., J. Chem. Phys. 96,6768 (1992).Google Scholar
19 Ross, S. C., Butenhoff, T. J., Rohlfing, E. A. and Rohlfing, C. M., J. Chem. Phys. 100,4110 (1994).Google Scholar
20 Pitzer, K. S. and Clementi, E., J. Am. Chem. Soc., 81,4477 (1959); (b) D. W. Ewing and G. V. Pfeiffer, Chem. Phys. Lett. 86, 365 (1982).Google Scholar
21 Raghavachari, K., Whiteside, R. A., and Pople, J. A., J. Chem. Phys. 85,6623 (1986).Google Scholar