Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:11:16.321Z Has data issue: false hasContentIssue false

Electronic properties of monolayer molybdenum dichalcogenides under strains

Published online by Cambridge University Press:  15 May 2015

J. Sugimoto
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
K. Shintani
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

The electronic band structures of monolayer molybdenum dichalcogenides, MoS2, MoSe2, and MoTe2 under either uniaxial or biaxial strain are calculated using first-principles calculation with the GW method. The imposed uniaxial strain is in the zigzag direction in the honeycomb lattice whereas the imposed biaxial strain is in the zigzag and armchair directions. It is found that the band gaps of these dichalcogenides almost linearly increase with the decrease of the magnitude of compressive strain, reach their maxima at some compressive strain, and then decrease almost linearly with the increase of tensile strain. It is also found their maximum band gaps are direct bandgaps.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C., ACS Nano 8, 1102 (2014).CrossRefGoogle Scholar
Pachauri, V., Kern, K., and Balasubramanian, K., APL Mater. 1, 032102 (2013).CrossRefGoogle Scholar
Böker, Th., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voss, D., Krüger, P., Mazur, A., and Pollmann, J., Phys. Rev. B 64, 235305 (2001).CrossRefGoogle Scholar
Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G., and Lee, J. D., Phys. Rev. B 85, 033305 (2012).CrossRefGoogle Scholar
Chang, C.-H., Fan, X., Lin, S.-H., and Kuo, J.-L., Phys. Rev. B 88, 195420 (2013).CrossRefGoogle Scholar
Dong, L., Namburu, R. R., O’Regan, T. P., Dubey, M., and Dongare, A. M., J. Mater. Sci. 49, 6762 (2014).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Shishkin, M and Kresse, G., Phys. Rev. B 74, 035101 (2006).CrossRefGoogle Scholar
Shishkin, M and Kresse, G., Phys. Rev. B 75, 235102 (2007).CrossRefGoogle Scholar
Fuchs, F., Furthmüller, J., Bechstedt, F., Shishkin, M., and Kresse, G., Phys. Rev. B 76, 115109 (2007)CrossRefGoogle Scholar
Shishkin, M, Marsman, M., and Kresse, G., Phys. Rev. Lett. 99, 246403 (2007).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Yue, Q., Kang, J., Shao, Z., Zhang, X., Chang, S., Wang, G., Qin, S., and Li, J., Phys. Lett. A 376, 1166 (2012).CrossRefGoogle Scholar