Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T00:52:45.306Z Has data issue: false hasContentIssue false

Electronic Properties of Hydrogenated Graphene-Like Materials Under Strains

Published online by Cambridge University Press:  22 May 2014

K. Mihara
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
K. Shintani
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

The electronic band structures of the hydrogenated graphene-like materials, graphane, silicane, and germanane, under tensile strains are calculated using first-principles calculation. The imposed tensile strain is in either the armchair or zigzag direction in the honeycomb lattice. It is found that the band gap of graphane gradually increases with the increase of the strain, whereas the band gaps of silicane and germanane decrease with the increase of the strain. There is little effect of the direction of the imposed strain on such strain dependences.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Léandri, C., Ealet, B., and Lay, G. L., Appl. Phys. Lett. 96, 183102 (2010).CrossRefGoogle Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Yamada-Takamura, Y., Phys. Rev. Lett. 108, 245501 (2012).CrossRefGoogle Scholar
Takeda, K. and Shiraishi, K., Phys. Rev. B 50, 14916 (1994).CrossRefGoogle Scholar
Sofo, J. G., Chaudhari, A. S., and Barber, G. D., Phys. Rev. B 75, 153401 (2007).CrossRefGoogle Scholar
Bianco, E., Butler, S., Jiang, S., Restrepo, O. D., Windl, W. and Goldberger, J. E., ACS Nano 7, 4414 (2013).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396E (1997).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Topsakal, M., Cahangirov, S., and Ciraci, S., Appl. Phys. Lett. 96, 091912 (2010).CrossRefGoogle Scholar
Kumar, N., Sharma, J. D., Kumar, A., and Ahluwalia, P. K., AIP Conf. Proc. 1512, 192 (2013).CrossRefGoogle Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., and Novoselov, K. S., Science 323, 610 (2009).CrossRefGoogle Scholar