Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T18:15:44.938Z Has data issue: false hasContentIssue false

Electronic properties of CeOs4Sb12

Published online by Cambridge University Press:  01 February 2011

Donald Galvan*
Affiliation:
[email protected], Centro de Ciencias de la Materia Condensada-UNAM, Fisicoquimica de Superficies, Carr. Tijuana-Ensenada, Km. 107, Ensenada, Baja California Norte, 22800, United States, (646)1-74-46-02, (646)1-74-46-03
Get access

Abstract

CeOs4Sb12 is a very interesting material due to the diversity of physical properties which could be dedicated to industrial applications. With this goal in mind, electronic structural calculations were performed in order to provide information regarding its properties. The energy bands yielded information regarding its semiconductor behavior as well as a mini gap of the order of 0.45 eV between the valence and conduction bands. Moreover, total and projected density of states yielded information of a possible hybridization between Ce f-, Os d- and p-, with Sb p-orbitals. Hence, this compound could be considered a likely candidate as a thermoelectic material

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jeitschko, W., Braun, D. J., Acta Cryst., B33 (1977) 3401.Google Scholar
[2] Meisner, G. P., Torikachvili, M. S., Yang, K. N., Maple, M. B. and Guertin, R. P., J. Appl. Phys. 55 (1985) 3073.Google Scholar
[3] Meisner, G. P., Stewart, G. R., Torikachvili, M. S. and Maple, M. B., in Proc. LT-17, eds. Eckern, U., Schmid, A., Weber, W. and Wuhl, H. (Elsevier, Amsterdam, 1984) p. 711.Google Scholar
[4] Shirotani, I., Uchiumi, T., Ohno, K., Sekine, C., Nakazawa, Y., Kadona, K., Todo, S. and Yagi, T., Phys. Rev. B 56, (1997) 7866.Google Scholar
[5] Danebrock, M. E., Evers, C. B. H. and Jeitschko, W., J. Phys. Chem. Solids 57, (1996) 381.Google Scholar
[6] Meisner, G. P., Torikachvili, M. S., Yang, K. N., Maple, M. B. and Guertin, R. P., J. Appl. Phys. 57, (1985) 3037.Google Scholar
[7] Morelli, D. T. and Meisner, G. P., J. Appl. Phys. 77, (1995) 3777.Google Scholar
[8] Maple, M. P., Dilley, N. R., Gajewski, D. A., Bauer, E. D., Freeman, E. J., Chau, R., Mandrus, D. and Seles, B. C., Physica B 259–261, (1999) 8.Google Scholar
[9] Takeda, N. and Ishikawa, M., Physica B 259–261, (1999) 92.Google Scholar
[10] Sekine, C., Uchiumi, T., Shiratani, I. and Yagi, T., Phys. Rev. Lett. 79, (1997) 3218.Google Scholar
[11] Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, (1996) 132511.Google Scholar
[12] Whangbo, M.-H. and Hoffmann, R., J. Am. Chem. Soc. 100, (1978) 6093.Google Scholar
[13] Hoffmann, R., J. Chem. Phys. 39, (1963) 1397.Google Scholar
[14] Landrum, G. A., the YAeHMOP package is a freely available on www at: http://overlap.chem.Cornell.edu:8080/yaehmop.html Google Scholar
[15] F-orbitals are included in the calculations as a version 3.x, using W. V. Glassey's routine (to be published).Google Scholar
[16] Galvan, D. H., J. Mat. Sci. Lett. 17, (1998) 805.Google Scholar
[17] Ho, P.-C., Zapf, V. S., Bauer, E. D., Frederick, N. A., Maple, M. B., Gister, G., Rogl, P., Berger, St., Paul, Ch., and Bauer, E., World Scientific, 2001.Google Scholar
[18] Alvarez, S., Table of parameters for Extended Huckel calculations, Universitat de Barcelona, 1993.Google Scholar
[19] Dordevic, S. V., Dilley, N. R., Maple, M. B., Basov, D. N., Phys. Rev. Lett. 86, (2001) 684.Google Scholar