Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T20:50:21.475Z Has data issue: false hasContentIssue false

Electronic Device Fabrication Using Electron Cyclotron Resonance Etching of Boron Doped Homoepitaxial Diamond Films

Published online by Cambridge University Press:  25 February 2011

S.A. Grot
Affiliation:
center for Electronic Materials and Processing Department of Electrical and Computer Engineering
R.A. Ditizio
Affiliation:
center for Electronic Materials and Processing Department of Engineering Science and Mechanics
G.SH. Gildenblat
Affiliation:
center for Electronic Materials and Processing Department of Electrical and Computer Engineering
A.R. Badzian
Affiliation:
Materials Research Laboratory The Penn State University, University Park, PA 16802
S.J. Fonash
Affiliation:
center for Electronic Materials and Processing Department of Engineering Science and Mechanics
Get access

Abstract

We describe the applicability of oxygen based Electron Cyclotron Resonance (ECR) etching of diamond for the purpose of fabricating electronic test structures and recessed gate field effect transistors. Boron doped homoepitaxial diamond films grown in a microwave assisted CVD reactor were used for this study. Etch rates from 8 nm/min up to 0.5 μm/min. were achieved depending on etch parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gildenblat, G.Sh., Grot, S. A., and Badzian, A. R., Proc. of the IEEE, 79, 647 (1991).Google Scholar
2. Efremow, N. N., Geis, M. W., Flanders, D. C., Lincoln, G. A., and Economou, N. P., J. Vac. Sci. Technol. B 3, 416 (1985).CrossRefGoogle Scholar
3. Sandhu, G. S. and Chu, W. K., Appl. Phys. Lett., 55 437 (1989).Google Scholar
4. Beetz, C. P. Jr, Lincoln, B. A., Lin, B. Y., and Tan, S. H., in Proc. 2nd, International Conference on New Diamond Science and Technology, Washington DC, Sept. 23–27, 1990, 833 (1991).Google Scholar
5. Marsh, J. B. and Farnsworth, H. E., Surface Sci., 1, 3 (1964).CrossRefGoogle Scholar
6. Zhu, W., Wang, X. H., Badzian, A. R., and Messier, R., in Proc. 2nd International Conference on New Diamond Science and Technology, Washington DC, Sept. 23–27, 1990, 821 (1991).Google Scholar
7. Matsuoka, M., and Ono, K., J. Vac. Sci. Technol. A, 6, 25 (1988).Google Scholar
8. Holber, W. M., and Forster, J., J. Vac. Sci. Technol. A, 8, 3720 (1990).Google Scholar
9. Gildenblat, G.Sh., Grot, S. A., and Badzian, A. R., presented at The 1991 International Semiconductor Device Research Symposium, Charlottesville, VA, Dec. 4–6, 1991.Google Scholar
10. Geis, M. W., Private communication.Google Scholar
11. Grot, S. A., Gildenblat, G. Sh., Hatfield, C. W., Wronski, C. R., Badzian, A. R., Badzian, T., and Messier, R., IEEE Electron Device Lett., 11, 100 (1990).CrossRefGoogle Scholar
12. Grot, S. A., Hatfield, C. W., Gildenblat, G. Sh., Badzian, A. R., and Badzian, T., Appl. Phys. Lett., 58, 1542 (1991).Google Scholar
13. Gildenblat, G. Sh., Grot, S. A., Hatfield, C. W., Badzian, A. R., and Badzian, T., IEEE Electron Device Lett., 11, 371 (1990).CrossRefGoogle Scholar
14. Moazed, K. L., Nguyen, R., and Zeidler, J. R., IEEE Electron Device Lett., 9, 350 (1988).Google Scholar
15. Liu, G., Fonash, S. J., Jap. Appl. Phys., 30, L269, 1991.Google Scholar