Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:54:30.695Z Has data issue: false hasContentIssue false

Electronic Band-Structure of Mg1-xZnxSySe1-y Semiconductor Alloy

Published online by Cambridge University Press:  21 February 2011

K. L. Teo
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering
Y. P. Feng
Affiliation:
Depatment of Physics National University of Singapore, Singapore 0511
M. F. Li
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering
T. C. Chong
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering
Get access

Abstract

II-VI semiconductor alloys have recently received considerable attention for their possible use in double heterostructure (DH) blue laser diodes (LDs).1-4 The purpose of this paper is to present the empirical pseudopotential method within virtual crystal approximation for calculating the band structure of MgZnSSe quaternary alloy. The dependence of band gap energies on alloy composition has shown that MgZnSSe can be a direct or an indirect semiconductor. Electron and hole effective masses are calculated for different composition. Camel's back structure for the X valley conduction band has been found for certain composition range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jeon, H., Ding, J., Nurmikko, A. V., Luo, H., Samarth, N., Furdyna, J. K., Bonner, W. A., Appl. Phys. Lett. 57, 2413, (1990).Google Scholar
2 Kunio, Ichino, Yi-hong, Wu, Yiochi, Kawakami, Shizuo, Fujita and Shigeo, Fujita, J Crystal Growth 117, 527, (1992).Google Scholar
3 Hasse, M. A., Qiu, J., DePuydt, J. M. and Cheng, H., Appls. Phys. Lett. 59, 1272, (1991).Google Scholar
4 Sun, G., Shahzad, K., Gaines, J. M. and Khurgin, J. B., Appl.Phys. Lett. 59, 310, (1991);Google Scholar
5 Hiroyuki, Okuyama, Kazushi, Nakano, Takao, Miyajima and Katsuhiro, Akimoto, Jpn. J. Appl. Phys. 30, L1620, (1991); Hiroyuki Okuyama, Kazushi Nakano, Takao Miyajima and Katsuhiro Akimoto, J. Crystal Growth 117, 139, (1992).Google Scholar
6 Hiroyuki, Okuyama, Futoshi, Hiei and Katsuhiro, Akimoto, Jpn. J. Appl. Phys. 31, L340, (1992)Google Scholar
7 Cohen, M. L. and Bergstresser, T. K., Phys. Rev. 141, 789, (1966).Google Scholar
8 Cohen, M. L. and Heine, V., Solid State Physics, 24, ed. Eherenreich, H., Seitz, F. and Turnbull, D., (Academic, New York, 1970), pl37.Google Scholar
9 Baldereschi, A., Hess, E., Maschke, K., Neumann, H., K-R, Schulze and Unger, K., J. Phys. C: Solid State Phys. 10, 4709, (1977).Google Scholar
10 Chelikowsky, J. R. and Cohen, M. L., Phys. Rev. B 14, 556, (1976).Google Scholar
11 Wepfer, G., Collins, T.C. and Euwema, R. N., Phys. Rev. B 4, 1296, (1971).Google Scholar
12 Nobuhiko, Yamashita, Jpn. J. Appl. Phys. 30, 1384, (1991).Google Scholar
13 Ravindra, Pandey, Jaffe, J. E. and Barry Kunz, A., Phys. Rev. B 43, 9228, (1991).Google Scholar
14 Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Editor in Chief: Madelung, O., New Series III, Volume 22, Semiconductors, Springer-Verlag, Berlin, 1987.Google Scholar