Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:37:43.359Z Has data issue: false hasContentIssue false

Electronic and Optical Properties of Si/SiO2 Superlattices from First Principles: Role of Interfaces.

Published online by Cambridge University Press:  21 March 2011

Pierre Carrier
Affiliation:
Département de Physique et Groupe de Recherche en Physique et Technologie des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Québec, CanadaH3C 3J7
Gilles Abramovici
Affiliation:
Département de Physique et Groupe de Recherche en Physique et Technologie des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Québec, CanadaH3C 3J7 Laboratoire de Physique des Solides, associé au C.N.R.S., Université Paris Sud, Centre d'Orsay, 91405 Orsay, France
Laurent J. Lewis
Affiliation:
Département de Physique et Groupe de Recherche en Physique et Technologie des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Québec, CanadaH3C 3J7
M. W. C. Dharma-wardana
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, CanadaK1A 0R6
Get access

Abstract

The observation of intense luminescence in Si/SiO2 superlattices (SLs) has lead to new theoretical research on silicon-based materials. We have performed first-principles calculations using three Si/SiO2 SL models in order to examine the role of interfaces on the electronic structure and optical properties. The first two models are derived directly from crystalline structures and have simple interfaces. These models have been studied using the full-potential, linearized-augmented-plane-wave method, in the local-density-approximation (LDA). The optical absorption within the interband transition theory (excluding excitonic effects) have been deduced. The Si(001)-SiO2 interface structure is shown to affect the optical behaviour. Following these observations, we have considered a more realistic, fully-relaxed model. The projector-augmented-wave method under the LDA is used to perform the structural relaxation as well as band structure and optical calculations. The role of confinement on the energy gap is studied by inserting additional silicon slabs into the supercell. Direct energy gaps are observed and the energy gap is found to decrease with increasing silicon slab thickness, as observed experimentally. The role of the interface has been considered in more details by studying the contribution to the energy gap of Si atoms having different oxidation patterns; partially oxidized Si atoms at the interface, as well as Si atoms inside the Si layer, are shown to contribute to the transitions at the energy gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, Z. H., Lockwood, D. J., Baribeau, J.- M., Nature 378, 258 (1995)Google Scholar
2. Kanemitsu, Y., Okamoto, S., Phys. Rev. B, 56, R15561 (1997) ; S.V. Novikov, J. Sinkkonen, O. Kilpelä, S.V. Gastev, J. Vac. Sci. Technol. B 15(4), 1471 (1997); L. Khriachtchev, M. Rä sä nen, S. Novikov, O. Kilpelä, J. Sinkkonen, J. Appl. Phys. 86, 5601 (1999) ; V. Mulloni, R. Chierchia, C. Mazzeleni, G. Pucker, L. Pavesi, P. Bellutti, Philos. Mag. B 80, 705 (2000) ; Y. Kanemitsu, M. Liboshi, T. Kushida, Appl. Phys. Lett. 76, 2200 (2000).Google Scholar
3. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990); V. Lehman, U. Gösele, Appl. Phys. Lett. 58, 856 (1991).Google Scholar
4. Kanemitsu, Y., Okamoto, S., Phys. Rev B 56, R15561 (1997).Google Scholar
5. Kageshima, H., Shiraishi, K., Mat. Res. Soc. Symp. Proc. 486, 337 (1998).Google Scholar
6. Neaton, J. B., Muller, D. A., Ashcroft, N.W., Phys. Rev. Lett. 85, 1298 (2000).Google Scholar
7. Blaha, P., Schwarz, K., Luitz, J., WIEN97, Vienna University of Technology 1997. [Improved and updated Unix version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990).]Google Scholar
8. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994); G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999).Google Scholar
9. Kresse, G., Furthmüller, J., VASP 4.4, Vienna University of Technology 1997. [Improved and updated Unix version of the original copyrighted VASP/VAMP code, which was published by G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15-50 (1996).]Google Scholar
10. Yu, P. Y., Cardona, M., Fundamentals of Semiconductors, page 251, (Springer, Berlin, 1996).Google Scholar
11. Herman, F., Batra, I. P., The Physics of SiO2 and its Interfaces, page 1, ed. by Pantelides, S.T., (Pergamon, Oxford, 1978).Google Scholar
12. Tit, N., Dharma-wardana, M. W. C., J. Appl. Phys. 86, 1 (1999).Google Scholar
13. The initial Si/SiO2 structure used here to generate the FRMs is the “Model III” described in Pasquarello, A., Hybertsen, M. S., and Car, R., Appl. Surf. Sci. 104/105, 317 (1996).Google Scholar
14. Tran, M., Tit, N., Dharma-wardana, M. W. C., Appl. Phys. Lett. 75, 4136 (1999).Google Scholar
15. Blöchl, P. E., Phys. Rev. B 49, 16223 (1994); G. Gilat, N. R. Bharatiya, Phys. Rev B 12, 3479 (1975); J. Rath, A. J. Freeman, Phys. Rev. B 11, 2109 (1975).Google Scholar
16. Albrecht, S., Reining, L., Sole, R. Del, Onida, G., Phys. Rev. Lett. 80, 4510 (1998).Google Scholar
17. Lu, Z. H., Graham, M.J., Jiang, D. T., Tan, K.H., Appl. Phys. Lett. 63, 2941 (1993); F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, Phys. Rev. B 38, 6084 (1988).Google Scholar