Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:30:46.916Z Has data issue: false hasContentIssue false

Electronic and Mechanical Coupling in Elastically Bent ZnO Micro/Nanowires

Published online by Cambridge University Press:  18 March 2014

Xuewen Fu
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
Zhimin Liao
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
Dapeng Yu*
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China
*
Get access

Abstract

Elastic engineering strain has been regarded as a low-cost and continuously variable manner for altering the physical and chemical properties of materials, and it becomes even more important at low-dimensionality because at micro/nanoscale, materials/structures can usually bear exceptionally high elastic strains before failure. The elastic strain effects are therefore greatly magnified in micro/nanoscale structures and should be of great potential in the design of novel functional devices. The purpose of this overview is to present a summary of our recently progress in the energy band engineering of elastically bent ZnO micro/nanowires. First, we present the electronic and mechanical coupling effect in bent ZnO nanowires. Second, we summary the bending strain gradient effect on the near-band-edge (NBE) emission photon energy of bent ZnO micro/nanowires. Third, we show that the strain can induce exciton fine-structure splitting and shift in ZnO microwires. Our recent progresses illustrate that the electronic band structure of ZnO micro/nanowires can be dramatically tuned by elastic strain engineering, and point to potential future applications based on the elastic strain engineering of ZnO micro/nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feng, J., Qian, X., Huang, C.W., and Li, J., Nat. Photon. 6, 866 (2012).10.1038/nphoton.2012.285CrossRefGoogle Scholar
Zhu, T. and Li, J., Prog. Mater. Sci. 55, 710 (2010).10.1016/j.pmatsci.2010.04.001CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).10.1126/science.1157996CrossRefGoogle Scholar
Liu, F., Ming, P., and Li, J., Phys. Rev. B 76, 064120 (2007).10.1103/PhysRevB.76.064120CrossRefGoogle Scholar
Bertolazzi, S., Brivio, J., and Kis, A., ACS Nano 5, 9703 (2011).10.1021/nn203879fCrossRefGoogle Scholar
Wong, E. W., Sheehan, P. E., and Lieber, C. M., Science 277, 1971 (1997).10.1126/science.277.5334.1971CrossRefGoogle Scholar
Wang, L., Zheng, K., Zhang, Z., and Han, X., Nano Lett. 11, 2382 (2011).10.1021/nl200735pCrossRefGoogle Scholar
Wei, B., Zheng, K., Ji, Y., Zhang, Y. F., Zhang, Z., and Han, X., Nano Lett. 12, 4595 (2012).10.1021/nl301897qCrossRefGoogle Scholar
Levy, N., Burke, S., Meaker, K., Panlasigui, M., Zettl, A., Guinea, F., Neto, A. C., and Crommie, M., Science 329, 544 (2010).10.1126/science.1191700CrossRefGoogle Scholar
He, R. and Yang, P., Nat. Nanotech. 1, 42 (2006).10.1038/nnano.2006.53CrossRefGoogle Scholar
Han, X., Jing, G., Zhang, X., Ma, R., Song, X., Xu, J., Liao, Z., Wang, N., and Yu, D., Nano Res. 2, 553 (2009).10.1007/s12274-009-9053-4CrossRefGoogle Scholar
Liu, Z., Wu, J., Duan, W., Lagally, M. G., and Liu, F., Phys. Rev. Lett. 105, 016802 (2010).10.1103/PhysRevLett.105.016802CrossRefGoogle Scholar
Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J. W. L., Khanal, D. R., Ogletree, D. F., and , J. C, Grossman, , Nat. Nanotech. 4, 732 (2009).10.1038/nnano.2009.266CrossRefGoogle Scholar
Fu, X.W., Liao, Z.M., Liu, R., Xu, J., and Yu, D., ACS Nano 7, 8891 (2013).10.1021/nn403378gCrossRefGoogle Scholar
Dietrich, C., Lange, M., Klüpfel, F., von Wenckstern, H., Schmidt-Grund, R., and Grundmann, M., Appl. Phys. Lett. 98, 031105 (2011).10.1063/1.3544939CrossRefGoogle Scholar
Xue, H. Z., Pan, N., Li, M., Wu, Y. K., Wang, X. P., and Hou, J. G., Nanotech. 21 (2010).Google Scholar
Xu, S., Guo, W., Du, S., Loy, M., and Wang, N., Nano Lett. 12, 5802 (2012).10.1021/nl303132cCrossRefGoogle Scholar
Fu, X.W., Fu, Q., Kou, L. Z., Zhu, X. L., Zhu, R., Xu, J., Liao, Z. M., Zhao, Q., Guo, W. L., and Yu, D. P., Frontiers of Physics 8, 509 (2013).10.1007/s11467-013-0386-9CrossRefGoogle Scholar
Fu, Q., Zhang, Z. Y., Kou, L., Wu, P., Han, X., Zhu, X., Gao, J., Xu, J., Zhao, Q., Guo, W., and Yu, D. P., Nano Res. 4, 308 (2011).10.1007/s12274-010-0085-6CrossRefGoogle Scholar
Signorello, G., Karg, S., Björk, M. T., Gotsmann, B., and Riel, H., Nano Lett. 13, 917 (2013).10.1021/nl303694cCrossRefGoogle Scholar
Ieong, M., Doris, B., Kedzierski, J., Rim, K., and Yang, M., Science 306, 2057 (2004).10.1126/science.1100731CrossRefGoogle Scholar
Wang, Z. and Song, J., Science 312, 242 (2006).10.1126/science.1124005CrossRefGoogle ScholarPubMed
Qin, Y., Wang, X., and Wang, Z. L., Nature 451, 809 (2008).10.1038/nature06601CrossRefGoogle Scholar
Wang, Z. L., Adv Mater 24, 4632 (2012).10.1002/adma.201104365CrossRefGoogle Scholar
Zhu, G. A., Yang, R. S., Wang, S. H., and Wang, Z. L., Nano Lett. 10, 3151 (2010).10.1021/nl101973hCrossRefGoogle Scholar
Xu, S., Hansen, B. J., and Wang, Z. L., Nat. commun. 1, 93 (2010).10.1038/ncomms1098CrossRefGoogle Scholar
Wang, W., Zhao, Q., Li, H., Wu, H., Zou, D., and Yu, D., Adv. Funct. Mater. 22, 2775 (2012).10.1002/adfm.201200168CrossRefGoogle Scholar
Fu, X. W., Liao, Z. M., Xu, J., Wu, X. S., Guo, W., and Yu, D. P., Nanoscale 5, 916 (2013).10.1039/c2nr33281gCrossRefGoogle ScholarPubMed
Li, H., Zhao, Q., Wang, W., Dong, H., Xu, D., Zou, G., Duan, H., and Yu, D., Nano Lett. 13, 1271 (2013).10.1021/nl4000079CrossRefGoogle Scholar
Han, X., Kou, L., Lang, X., Xia, J., Wang, N., Qin, R., Lu, J., Xu, J., Liao, Z., Zhang, X., Guo, W. L., and Yu, D., Adv. Mater. 21, 4937 (2009).10.1002/adma.200900956CrossRefGoogle Scholar
Corsetti, F., Fernández-Serra, M., Soler, J. M., and Artacho, E., J. Phys. Condensed Mater. 25, 435504 (2013).10.1088/0953-8984/25/43/435504CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Xia, J. B., J. Lumin. 70, 120 (1996).10.1016/0022-2313(96)00049-XCrossRefGoogle Scholar
Han, X., Kou, L., Zhang, Z., Zhang, Z., Zhu, X., Xu, J., Liao, Z., Guo, W., and Yu, D., Adv. Mater. 24, 4707 (2012).10.1002/adma.201104372CrossRefGoogle Scholar
Liao, Z., Wu, H., Fu, Q., Fu, X., Zhu, X., Xu, J., Shvets, I., Zhang, Z., Guo, W., Leprince-Wang, Y., and Yu, D., Scientific Reports 2 (2012).10.1038/srep00452CrossRefGoogle Scholar