Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:28:27.841Z Has data issue: false hasContentIssue false

Electronic and Magnetic Properties of Small Co-O Quantum Wires

Published online by Cambridge University Press:  31 January 2011

Liudmila A Pozhar
Affiliation:
Constantine Mavromichalis
Affiliation:
[email protected], University of Idaho, Computer Science, Moscow, Idaho, United States
Get access

Abstract

Electronic and magnetic properties of small Co-O atomic clusters (“quantum wires”) have been studied in the framework of the Hartree-Fock (HF) method. The obtained results indicate that non-stoichiometric Co - O molecules with more than two O atoms possess at least one remarkably stretchable O-O bond that may facilitate significant re-construction of such molecules to larger structures. This re-construction may result in energetically favorable spin re-alignment in “antiferromagnetic” HF singlet Co-O molecules converting the singlets to larger “ferromagnetic” HF triplets and pentets. Such a spin re-alignment is energetically favorable, and may happen at the antiferromagnet-ferromagnet interface in “critical” core (Co) – shell (CoO) exchange-biased nanoclusters, providing for minimization of the surface energy, and leading to a loss of exchange bias. The obtained results are in agreement with available experimental and computational data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P. and Vandersypen, L.M.K., Nature 442, 766 (2006), etc.Google Scholar
2 Eizerman, J.M., Hanson, R., Beveren, L.H. Willems van, Witkamp, B., Vandersypen, L.M.K., and Kouwenhoven, L.P., Nature 430, 431 (2004), etc.Google Scholar
3 Dobrynin, A.N., Temst, K., Lievens, P., Margueritat, J., Gonzalo, J., Afonso, C.N., Piscopiello, E., and Tandeloo, G. Van, J. Appl. Phys. 101, 113913, (2007).Google Scholar
4 Kiwi, M., J. Magn. Magn. Mater. 234, 584 (2001); Stamps, R.L., J. Phys. D 33, R247 (2000).Google Scholar
5 Uzunova, E.L., Nikolov, G.S. and Mikosch, H., J. Phys. Chem. 106, 4104, (2002).Google Scholar
6 Kirilyuk, A., Demyk, K., Helden, G. von, Meijer, G., Poteryaev, A.I. and Lichtenstein, A.I., J. Appl. Phys. 93, 7379, (2003).Google Scholar
7 Pozhar, L.A. and Mitchel, W.C. in Towards Functional Nanostructures, edited by. Kishimoto, N., Salamo, G.J., Waag, A. and Wang, Z. (Springer, NY, 2009) Ch. 12; Pozhar, L.A., Yeates, A.T., F. Szmulowicz and Mitchel, W.C., EuroPhys. Lett.71 380, (2005).Google Scholar
8 Pozhar, L. A., Yeates, A. T., Szmulowicz, F. and Mitchel, W. C., Phys. Rev. B 74, 085306 (2006) see also: L. A. Pozhar, A. T. Yeates, F. Szmulowicz and W. C. Mitchel, Virtual J. Nanoscale Sci & Technol. 14, No. 8 (2006), http://www.vjnano.org.Google Scholar
9 Schmidt, M.W., J. Comput. Chem. 14, 1347 (1993); Roos, B.O., Adv. Chem. Phys. 69, 399 (1987); http://www.msg.ameslab.gov/GAMESS.Google Scholar
10 Stevens, W.J., Basch, H., Krauss, M. and Jasien, P., Can. J. Chem. 70, 612 (1992); T.R. Cundari and Stevens, W.J., J. Chem. Phys. 98, 5555, (1993).Google Scholar
11 Pozhar, L.A. and Mitchel, W.C., IEEE Trans. Magn. 43, 3037, (2007).Google Scholar
12 Bibes, M. and Barthélémy, A., IEEE Trans. Electron Devices, 54, 1003 (2007); J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, Munoz, J.S., and Baro, M.D., Phys. Reports 422, 65 (2005); J. van Elp, Phys. Rev. B 44, 6090 (1991), etc.Google Scholar
13 Klein, D.L., Surratt, G.T. and Kunz, A.B., J. Phys. C 12, 3917 (1979).Google Scholar