Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T23:51:30.508Z Has data issue: false hasContentIssue false

Electron transport within the two-dimensional electron gas formed at a ZnO/ZnMgO heterojunction: Recent progress

Published online by Cambridge University Press:  21 May 2013

Walid A. Hadi
Affiliation:
Department of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario, Canada N9B 3P4
Erfan Baghani
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Michael S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.
Stephen K. O’Leary
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

We employ Monte Carlo simulations of the electron transport that occurs within the two-dimensional electron gas formed at a ZnO/ZnMgO heterojunction. Steady-state and transient electron transport results are presented. We find that at high fields, increases in the free electron concentration result in decreases in the electron drift velocities.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Őzgűr, Ű., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Ferry, D. K., Phys. Rev. B 12, 2361 (1975).CrossRefGoogle Scholar
Albrecht, J. D., Ruden, P. P., Limpijumnong, S., Lambrecht, W. R. L., and Brennan, K. F., J. Appl. Phys. 86, 6864 (1999).CrossRefGoogle Scholar
Guo, B., Ravaioli, U., and Staedele, M., Comp. Phys. Commun. 175, 482 (2006).CrossRefGoogle Scholar
Bertazzi, F., Goano, M., and Bellotti, E., J. Electron. Mater. 36, 857 (2007).CrossRefGoogle Scholar
Furno, E., Bertazzi, F., Goano, M., Ghione, G., and Bellotti, E., Solid-State Electron. 52, 1796 (2008).CrossRefGoogle Scholar
O'Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., Solid State Commun. 150, 2182 (2010).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 033720 (2012).CrossRefGoogle Scholar
Hadi, W. A., Chowdhury, S., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 123722 (2012).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 24, 2 (2013).Google Scholar
Tampo, H., Shibata, H., Matsubara, K., Yamada, A., Fons, P., Niki, S., Yamagata, M., and Kanie, H., Appl. Phys. Lett. 89, 132113 (2006).CrossRefGoogle Scholar
Bhapkar, U. V. and Shur, M. S., J. Appl. Phys. 82, 1649 (1997).CrossRefGoogle Scholar
Lugli, P. and Ferry, D. K., IEEE Trans. Electron Devices 32, 2431 (1985).CrossRefGoogle Scholar
Seeger, K., Semiconductor Physics: An Introduction, 9th ed. (Springer-Verlag, Berlin, 2004).CrossRefGoogle Scholar