Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:19:32.932Z Has data issue: false hasContentIssue false

Electron transport within a zinc-oxide-based two-dimensional electron gas: The impact of variations in the electron effective mass

Published online by Cambridge University Press:  19 May 2014

Walid A. Hadi
Affiliation:
Department of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario, Canada N9B 3P4
Erfan Baghani
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Michael S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.
Stephen K. O’Leary
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

We examine the electron transport that occurs within a zinc-oxide-based two-dimensional electron gas using Monte Carlo simulations. The sensitivity of the results to variations in the lowest energy conduction band valley electron effective mass is examined. Increased values of the electron effective mass result in diminished electron drift velocities and reduced sensitivity to the free electron concentration. In agreement with our previous studies for a fixed value of the electron effective mass [11], we find that the reduced scattering due to the screening of the impurity and polar optical scattering leads to a slightly higher mobility of the 2DEG at low-fields but reduces the peak velocity, since gaining a higher energy due to the reduced polar optical phonon scattering enhances the effects of the non-parabolicity within this material.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, J. D., Ruden, P. P., Limpijumnong, S., Lambrecht, W. R. L., and Brennan, K. F., J. Appl. Phys. 86, 6864 (1999).CrossRefGoogle Scholar
Bertazzi, F., Goano, M., and Bellotti, E., J. Electron. Mater. 36, 857 (2007).CrossRefGoogle Scholar
Furno, E., Bertazzi, F., Goano, M., Ghione, G., and Bellotti, E., Solid-State Electron. 52, 1796 (2008).CrossRefGoogle Scholar
O'Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., Solid State Commun. 150, 2182 (2010).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 033720 (2012).CrossRefGoogle Scholar
Hadi, W. A., Chowdhury, S., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 123722 (2012).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 24, 2 (2013).Google Scholar
Tampo, H., Shibata, H., Matsubara, K., Yamada, A., Fons, P., Niki, S., Yamagata, M., and Kanie, H., Appl. Phys. Lett. 89, 132113 (2006).CrossRefGoogle Scholar
Akasaka, S., Tsukazaki, A., Nakahara, K., Ohtomo, A., and Kawasaki, M., Jpn. J. Appl. Phys. 50, 080215 (2011).Google Scholar
Tsukazaki, A., Ohtomo, A., and Kawasaki, M., J. Phys. D: Appl. Phys. 47, 034003 (2014).CrossRefGoogle Scholar
Hadi, W. A., Baghani, E., Shur, M. S., and O’Leary, S. K., Mater. Res. Soc. Symp. Proc. 1577, DOI: 10.1557/opl.2013.649CrossRefGoogle Scholar
Adachi, S., Properties of Group-IV, III-V and II-VI Semiconductors (Wiley & Sons, Chichister, 2005).CrossRefGoogle Scholar