Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:20:03.633Z Has data issue: false hasContentIssue false

Electron Thermal Transport Properties of a Quantum Dot

Published online by Cambridge University Press:  01 February 2011

Xanthippi Zianni*
Affiliation:
[email protected], Technological Educational Institution of Chalkida, Dept. of Applied Sciences, Psachna, Chalkida, N/A, 34400, Greece, 302228099541
Get access

Abstract

The electron thermal conductance of a dot has been calculated within a linear response theory in the regime of weak coupling with two electrode leads. Coulomb oscillations are found. We discuss the effect of the interplay between the charging energy, the thermal energy and the confinement in the behavior of the electron thermal conductance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Harman, T.C., Walsh, M.P., Laforge, B.E., Turner, G.W., Journal of Electronic Materials 34, L19 (2005).Google Scholar
2 Baladin, A., Journal of Nanoscience and Nanotechnology 5, 1015 (2005).Google Scholar
3 Sajfert, V., Setrajcic, J. P., Jacimovski, S., Tosic, B., Physica E 25, 479 (2005).Google Scholar
4 Bao, Y., Liu, W.L., Shamsa, M., Alim, K., Balandin, A.A., Liu, J.L., Journal of the Electrochemical society 152, G432 (2005).Google Scholar
5 Kihara, T., Harada, T., Koshida, N., Japanese Journal of Applied Physics Part 1 44, 4084 (2005).Google Scholar
6 Shamsa, M., Liu, W., Balandin, A.A., Liu, J., Applied Physics Letters 87, 202105 (2005).Google Scholar
7 Llaguno, M.C., Fischer, J.E., Johnson, A.T., Hone, J., Nano Letters 4, 45 (2004).Google Scholar
8 Vashaee, D. and Shakouri, A., Phys. Rev. Lett. 92, 106103 (2004).Google Scholar
9 Yang, R. and Chen, G., Phys. Rev. B 69, 195316 (2004).Google Scholar
10 Balandin, A.A. and Lazarenkova, O., Applied Physics Letters 82, 415, (2003).Google Scholar
11 Liu, J.L., Khitun, A. and Wang, K.L., Liu, W.L., Chen, G., Xie, Q.H., Thomas, S.G., Physical Review B 67, 165333 (2003).Google Scholar
12 Liu, J.L., Khitun, A., Wang, K.L., Borca-Tasciuc, T., Liu, W.L., Chen, G., Yu, D.P., Journal of Crystal Growth 227–228, 1111 (2001).Google Scholar
13 Khitun, A., Wang, K.L. and Chen, G., Nanotechnology 11, 327 (2000).Google Scholar
14 Small, J. P., Perez, K. M., Kim, P., Physical Review Letters 91, 256801 (2003).Google Scholar
15 Andreev, A.V., Matveev, K.A., Physical Review Letters 86, 280 (2001).Google Scholar
16 Dzurak, A.S., Smith, C.G., Barnes, C.H.W., Pepper, M., Martin-Moreno, L., Liang, C.T., Ritchie, D.A., Jones, G.A.C, Physica B 249–251, 281 (1998).Google Scholar
17 Beenakker, C.W.J., Phys. Rev. B 44, 1646 (1991).Google Scholar
18 Beenakker, C.W.J. and Staring, A.A.M., Phys. Rev. B 46, 9667 (1992).Google Scholar
19 Staring, A.A.M., Molenkamp, L.W., Alpenaar, B.W., Houten, H. van, Buyk, O.J.A., Mabesoone, M.A.A., Beenakker, C. W.J. and Foxon, C.T., Europhys. Lett. 22,57(1993).Google Scholar
20 Averin, D.V. and Nazarov, Y.V., Phys. Rev. Lett. 65, 2446 (1990).Google Scholar
21 Turek, M. and Matveev, K.A., Phys.Rev. B 65, 115332 (2002).Google Scholar
22 Matveev, K.A. and Andreev, A.V., Phys. Rev B 66, 045301 (2002).Google Scholar