Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:06:30.005Z Has data issue: false hasContentIssue false

Electron Spin Resonance and Ultra Violet (UV) Photoluminescence of Ge Implanted CuGaSe2 Thin Films Prepared by the CCSVT (Chemical Close-spaced Vapor Transport) Technique

Published online by Cambridge University Press:  01 February 2011

Serge Doka
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Heterogeneous Material Systems, SE2, Glienicker Strasse 100, Berlin, D-14109, Germany, ++493080622563, ++493080623199
Jasmin Hofstetter
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Glienicker Strasse 100, Berlin, D-14109, Germany
Marin Rusu
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Glienicker Strasse 100, Berlin, D-14109, Germany
Ernest Arushanov
Affiliation:
[email protected], Institute of Applied Physics, Academy of Sciences,Academiei 5, Chisinau, 277028, Moldova
Lips Klaus
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Kekulestrasse 5, Berlin, D-12489, Germany
Thomas Schedel-Niedrig
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Glienicker Strasse 100, Berlin, D-14109, Germany
Martha Ch. Lux- Steiner
Affiliation:
[email protected], Hahn- Meitner Institut GmbH Berlin, Glienicker Strasse 100, Berlin, D-14109, Germany
Get access

Abstract

Non-equilibrium ion implantation of Ge in p-type polycrystalline thin film CuGaSe2 (CGSe) prepared by Chemical Close-spaced Vapor Transport (CCSVT) has been performed with the goal to achieve n-type doping of this chalcopyrite semiconductor. Using Electron Spin Resonance (ESR) it is shown that Ge implantation induces a paramagnetic specie at g = 2.003. A model is proposed that assigns the ESR signal to electrons trapped by donor states that are electrically inactive. Moreover, UV photoluminescence of Ge implanted films has evidenced a new peak emission at 1.47 eV, which is resolved as a radiative recombination of a hole bound to the native copper vacancy and an electron bound to a deep donor with an ionization energy of ED =360±10 meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Siebentritt, S., Thin Solid Films 403-404, 18 (2002).Google Scholar
2. Zhang, S. B., Wei, Su-Huai, and Zunger, Alex, Journal of Applied Physics 83, 31923196 (1998).Google Scholar
3. Würz, R., Meeder, A., Marrón, D. Fuertes, and Schedel-Niedrig, Th., Knop-Gericke, A., Lips, K., Physical Review B70, 205321 (2004).Google Scholar
4. Doka, S., Rusu, M., Meeder, A., Arushanov, E., Fabre, N., Fiechter, A., Schedel-Niedrig, Th., Lux-Steiner, M.Ch., FMater. Res. Soc. Symp. Proc. Vol. 865, (2005).Google Scholar
5. Rusu, M., Doka, S., Kaufmann, C.A., Grigorieva, N., Schedel-Niedrig, Th. and Lux-Steiner, M.Ch., Thin Solid Films 480-481, 341346 (2005).Google Scholar
6. Bauchknet, A., Siebentritt, S., Albert, J., and Lux-Steiner, M. Ch., Journal of Applied Physics 89, 4391 (2001).Google Scholar
7. Curie, D., Luminescence in Crystals, Methuen, London, 206 (1963).Google Scholar
8. Pankove, J. I., Optical Processes in Semiconductors, Cambridge University, Cambridge (1991).Google Scholar
9. Zacks, E. and Halperin, A., Physical Review B6, 30723075 (1972).Google Scholar
10. Birkholz, M., Kanschat, P., Weiss, T., Czerwensky, M., and Lips, K, Physical Review B59, 1226812271 (1999).Google Scholar
11. Sato, K., Nishikawa, N., Akesenov, I., Shinzato, T. and Nakanishi, H., Jpn. J. Appl. Phys. 35 20612067 (1996),Google Scholar
12. Okada, H., Lee, H.-S., Wakahara, A., Yoshida, A., Ohshima, T. and Kamiya, T., Sol. Ener. Mat. & Sol. Cells 90, 9399 (2006).Google Scholar