Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T06:56:40.718Z Has data issue: false hasContentIssue false

Electron Spectroscopic Studies of Substoichiometric Tantalum Carbide

Published online by Cambridge University Press:  22 February 2011

G. R. Gruzalski
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. M. Zehner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. W. Ownby
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

XPS was used to determine core-level binding energies and valence-band structure for TaCx over the range 0.5 ≲ × ≲ 1.0. As x decreased, the carbonls binding energy (BE) changed very little, the carbon-2s BE shifted toward the Fermi level, the position of the p-d valence-band peak shifted toward the Fermi level more, and the tantalum-4d and -4f BE's shifted toward the Fermi level even more, about 0.16 eV for a change in × of 0.1. In addition, the valence-band spectra exhibited structure between about 1 and 2 eV BE, and this structure increased as x decreased. These observations are explicable in terms of charge transfer and the formation of occupied defect states associated with carbon vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a recent review of both theoretical and experimental work, see Neckel, A., Intern. J. Quantum Chem. 23, 1317 (1983).CrossRefGoogle Scholar
[2] Klima, J., J. Phys. C. 12, 3691 (1979).Google Scholar
[3] Huisman, L. M., Ci-lsson, A. E., Gelatt, C. D. Jr., and Ehrenreich, H., Phys. Rev. B 22, 991 (1980).CrossRefGoogle Scholar
[4] Gubanov, V. A., Ivanovsky, A. L., Shveikin, G. P., and Ellis, D. E., J. Phys. Chem. Solids 45, 719 (1984).Google Scholar
[5] Schwarz, K. and Rüsch, R., J. Phys. C 9, L433 (1976).Google Scholar
[6] Ries, G. and Winter, H., J. Phys. F 107, 1 (1980).Google Scholar
[7] Klein, B. M., Papaconstantopoulos, D. A., and Boyer, L. L., Phys. Rev. B 22, 1946 (1980).Google Scholar
[8] Pecheur, P., Toussaint, G., and Kauffer, E., Phys. Rev. B 29, 6606 (1984).Google Scholar
[9] Pickett, W. E., Klein, B. M., and Zeller, R., Bull. Am. Phys. Soc. 30, 620 (1985).Google Scholar
[10] Pfüger, J., Fink, J., Crecelius, G., Bohnen, K. P., and Winter, H., Solid State Commun. 44, 489 (1982).CrossRefGoogle Scholar
[11] Johansson-, L. I., Hagstrdm, A. L., Jacobson, B. E., and Hagstrdm, S. B. M., J. Electron Spectrosc. Related Phenomena 10, 259 (1977).Google Scholar
[12] Höchst, H., Steiner, P., Hüfner, S., and Politis, C., Z. Physik B 37, 27 (1980).Google Scholar
[13] Höchst, H., Bringans, R. D., and Steiner, P., Phys. Rev. B 25, 7183 (1982).Google Scholar
[14] Porte, L., Roux, L., and Hanus, J., Phys. Rev. B 28, 3214 (1983).Google Scholar
[15] Bringans, R. O. and Höchst, H., Phys. Rev. B 30, 5416 (1984).Google Scholar
[16] Gruzalski, G. R., Zehner, D. M., and Ow-Ty, G. W., Surf. Sci. 157, L395 (1985).CrossRefGoogle Scholar
[17] Powell, C. J., Erikson, N. E., and Jach, T., J. Vacuum Sci. Technol 20, 625 (1982).Google Scholar
[18] Wagner, C. D., et al., p. 188 in Handbook of X-Ray Photoelectron Spectroscopy, ed. by Muilenberg, G. E., Perkin-Elmer Corporation, Eden Prairie, MN, 1979.Google Scholar
[19] Oshima, C., Soudia, R., Aono, M., Otani, S., and Ishizawa, Y., Phys. Rev. B 30, 5361 (1984).Google Scholar
[20] Ramqvist, L., Hamrin, K., Johansson, G., Gelius, U., and Nordling, C., J. Phys. Chem. Solids 31, 2669 (1970).CrossRefGoogle Scholar