Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:56:25.106Z Has data issue: false hasContentIssue false

Electron Scattering by Native Defects in Ill-V Nitrides and their Alloys

Published online by Cambridge University Press:  15 February 2011

L. Hsu
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Materials Science Division, Lawrence Berkeley National Lab, Berkeley CA 94720
Get access

Abstract

We have calculated the electron mobilities in GaN and InN taking into consideration scattering by short range potentials, in addition to all standard scattering mechanisms. These potentials are produced by the native defects which are responsible for the high electron concentrations in nominally undoped nitrides. Comparison of the calculated mobilities with experimental data shows that scattering by short range potentials is the dominant mechanism limiting the electron mobilities in unintentionally doped nitrides with large electron concentrations. In the case of AlxGal1−xN alloys, the reduction in the electron concentration due to the upward shift of the conduction band relative to the native defect level can account for the experimentally measured mobilities. Resonant scattering is shown to be important when the defect and Fermi levels are close in energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 1237 (1992).Google Scholar
2. Li, X. J., Xu, Z., He, Z. J., Cao, H. Z., Su, W., Chen, Z. C., Zon, F., and Wang, E. G., Thin Solid Films 139, 261 (1986).Google Scholar
3. Molnar, R. J., Lei, T. and Moustakas, T. D., Appl. Phys. Lett. 62,72 (1993).Google Scholar
4. Chin, V. W. L., Tansley, T. L., and Osotchan, T., J. Appl. Phys. 75,7365 (1994).Google Scholar
5. Rode, D. L., Phys. Stat. Sol. B55, 687 (1973).Google Scholar
6. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
7. Pankove, J. I., Mater. Res. Symp. Proc. 162, 515 (1990).Google Scholar
8. Walukiewicz, W., Lagowski, L., Jastrzebski, L., Lichtensteiger, M., and Gatos, H. C., J. Appl. Phys. 50, 899 (1979).Google Scholar
9. Litwin-Staszewska, E., Porowski, S., and Filipchenko, A. A., Phys. Stat. Sol. B48, 525 (1971).Google Scholar
10. Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, 2533 (1987).Google Scholar
11. Sun, C. J. and Razeghi, M., Appl. Phys. Lett. 63, 973 (1993).Google Scholar
12. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
13. Gaskill, D. K., Doverspike, K., Rowland, L. and Rode, D. L., Inst. Phys. Conf. Ser. No. 141, 425 (1995).Google Scholar
14. Wickenden, D. K., Bryden, W. A., Inst. Phys. Conf. Ser. No. 137, 381 (1993).Google Scholar
15. Rowland, L. B., Doverspike, K., Gaskill, D. K., Appl. Phys. Lett. 66, 1495 (1995).Google Scholar
16. Nakamura, S., Mukai, T., Senoh, M., Jpn. J. Appl. Phys. 31, 2883 (1992).Google Scholar
17. Tansley, T. L. and Foley, C. P., Electron. Lett. 20, 1066 (1984).Google Scholar
18. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. R., Jones, K. S., and Pearton, S. J., AppI. Phys. Lett. 66, 1632 (1995).Google Scholar
19. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
20. Yamamoto, A., Tsujino, M., Ohkubo, M., and Hashimoto, A., Solar Energy Mat. and Solar Cells 35, 53 (1994).Google Scholar
21. Wisk, P. W., Abernathy, C. R., Pearton, S. J., Ren, F., Mater. Res. Soc. Symp. Proc. 282, 599 (1993).Google Scholar
22. Rode, D. L. in Semiconductors and Semimetals, eds. Willardson, R. K. and Beer, A. C. (Academic, New York, 1975), Vol 10, Chap. 1.Google Scholar
23. Yoshida, S., Misawa, S., Gonda, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
24. Koide, Y., Itoh, H., Sawaki, N., Akasaki, I., et al., J. Electrochem. Soc. 133, 1956 (1986).Google Scholar
25. Makowski, L., Glicksman, M., J. Phys. Chem. Solids 34,487 (1973).Google Scholar
26. Raikh, M. E., Efros, A. L., Sov. Phys. Solid State 28,735 (1986).Google Scholar
27. Walukiewicz, W., Phys. Rev. B41, 10218 (1990).Google Scholar
28. Sankey, O. F., Dow, J. D., Hess, K., Appl. Phys. Lett. 41, 664 (1982).Google Scholar
29. Wilamowski, Z., Swiatek, K., Dietl, T., and Kossut, J., Solid State Comm. 74, 833 (1990).Google Scholar