Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:57:31.556Z Has data issue: false hasContentIssue false

Electron Microscopy Characterization of Humidity Ball-Milling AlCuFe Intermetallic Powders

Published online by Cambridge University Press:  01 February 2011

C. Patiño-Carachure
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO.
O. Téllez-Vazquez
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO.
A. Bedolla-Jacuinde
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO.
R. Esparza
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Mor., 62251, MEXICO.
C. Ángeles-Chávez
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas No 152, Col. San Bartolo Atepehuacan, D. F., 07730, MEXICO.
R. Perez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Mor., 62251, MEXICO.
G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO.
Get access

Abstract

An Al58Cu25Fe17 alloy composition was produced by conventional casting technique. In order to take advantage from the hydrogen-environmental embrittlement reaction, which affects these alloys, this research was carried out subjecting prealloyed powders to wet-ball milling. Through these experiments it has been possible to evaluate the particle size reduction as consequence of hydrogen fracture and milling energy. The morphological and structural characteristics of the samples were performed using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The experimental results indicate that the samples with higher contents of humidity have a good particle size reduction. With the increment of milling time, the particle size was diminished even more reaching nanometer size scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosas, G., Perez, R., Materials Letters 36, 229 (1998).Google Scholar
2. Salazar, M., Perez, R. and Rosas, G., Journal of New Materials for Electrochemical Systems 8, 97 (2005).Google Scholar
3. Deevi, S.C., Sikka, V.K., Intermetallics 4, 357 (1996).Google Scholar
4. McKamey, C.G., Stoloff, N.S., in: Stoloff, N.S., Sikka, V.K. (Eds.). Phisical Metallurgy and Processing of Intermetallic Compounds, pp 351391(1996).Google Scholar
5. Deevi, S.C., Sikka, V.K., Maziasz, P.J., Cahn, R.W. (Eds.). Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties and Applications, ASM, Materials Park, OH, pp 145156, 361–375(1996).Google Scholar
6. Liu, C.T., Lee, E.H., Mckamey, C.G., Scr. Metall. 23, 875 (1989).Google Scholar
7. Mckamey, C. G. and Stoloff, N. S., in “Physical Metallurgy and Processing of Intermetallic Compounds” Chapman & Hall, Edited by Stoloff, N. S. and Sikka, V. K., 351, 479 (1986).Google Scholar
8. Kasul, D. B. and Heldt, L. A., Metall. and Mater. Trans. A 25, 1285 (1994).Google Scholar
9. Patiño-Carachure, C. et al., Journal of Non-Crystalline Solids 355, 1713 (2009).Google Scholar
10. Qing-Bo, Meng et al, Chin. Phys. Lett. 25, 3482 (2008).10.1088/0256-307X/25/9/104Google Scholar