Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:30:17.956Z Has data issue: false hasContentIssue false

Electron Microscopic Study of Domains in Relaxor Ferroelectrics

Published online by Cambridge University Press:  25 February 2011

Marc de Graef
Affiliation:
Materials Department, University of California at Santa Barbara, CA 93106
J.S. Speck
Affiliation:
Materials Department, University of California at Santa Barbara, CA 93106
D.R. Clarke
Affiliation:
Materials Department, University of California at Santa Barbara, CA 93106
D. Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

The ferroelectric and antiferroelectric displacements in perovskite-based ceramics give rise to a wide range of domain structures. This paper reports on transmission electron microscopy observations as a function of temperature of such structures in PLZT and PLSnZT. In the PLZT system superposition of the diffraction patterns from modulated domains of low symmetry give rise to patterns with an apparent high symmetry. The ½(hkl)-type reflections become more intense with decreasing temperature and split into diffuse rods at high temperature. In the PLSnZT system a hierarchy of domain structures is observed with length scales ranging from unit cell dimensions to the full grain size. A temperature dependent long-period modulation along the < 110 > directions is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Haertling, G.H., J. Amer. Cerain. Soc. 54, 304 (1971)Google Scholar
[2]Moulson, A.J. and Herbert, J.M., Electroceramics, (Chapman and Hall, New York, 1990),pp. 353368 Google Scholar
[3]Pan, W., Zhang, Q., Bhalla, A., Cross, L.E., J. Amer. Ceram. Soc. 72, 571 (1989)Google Scholar
[4]Groves, P. and Thomas, P.A., Ferroelectrics 89, 179 (1989)Google Scholar
[5]Burns, G. and Scott, B.A.., Sol. State Comm. 13, 423 (1973)Google Scholar
[6]Burns, G. and Dacol, F.H., Phys. Rev. B28, 2527 (1983)Google Scholar
[7]Wang, P.C., Chen, Z.L., lie, X.M., Yin, Z.W., Wen, S.L., Song, X.Y., Ferroelectrics Lett. 4, 47 (1985)Google Scholar
[8]Randall, C.A., Barber, D.J., Whatmore, R.W., J. Microscopy 145, 275 (1987)Google Scholar
[9]Randall, C.A., Barber, D., Whatmore, R.W., Groves, P., Ferroelectrics 76, 311 (1987)Google Scholar
[10]Yin, Z.W., Chen, X.T., Song, X.Y. and Feng, J.W., Ferroelectrics 87, 85 (1988)Google Scholar
[11]Keve, E.T. and Bye, K.L., J. Appl. Phys. 46, 810 (1975)Google Scholar
[12]Meitzler, A.H. and O'Bryan, H.M., Proc. IEEE 61, 959 (1973)Google Scholar
[13]Burns, G. and Dacol, F.H., Sol. State Comm. 48, 853 (1983)Google Scholar
[14]Carl, K. and Geisen, K., Proc. IEEE 61, 967 (1973)Google Scholar
[15]Stenger, C.G.F. and Burggraaf, A.J., J. Phys. Chem. Solids 41, 1741 (1980)Google Scholar
[16]Yokosuka, M. and Marutake, M., Jap. J. Appl. Phys. 25, 981 (1986)Google Scholar
[17]Randall, C.A., Barber, D., Whatmore, R.W. and Groves, P., Ferroelectrics 76, 277 (1987)Google Scholar
[18]Randall, C.A., Barber, D., Whatmore, R.W. and Groves, P., J. Mat. Sci. 21, 4456 (1986)Google Scholar
[19]Land, C.E., J. Amer. Ceram. Soc. 71, 905 (1988)Google Scholar
[20]Cross, L.E. (private conmmunimication)Google Scholar
[21]Chang, Y.-J., Lian, J.-Y., Wang, Y-I., Appl. Phys. A36, 221 (1985)Google Scholar
[22]Fujishita, H. and Hoshino, S., J. Phys. Soc. Japan 53, 226 (1984)Google Scholar
[23]Cowley, R.A., Phys. Rev. 134, A981 (1964)Google Scholar
[24]Nakamura, T., J. Phys. Soc. Japan 9, 425 (1954)Google Scholar