Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T13:34:57.239Z Has data issue: false hasContentIssue false

Electron Magnetic Resonance Studies on Nanowire and Nanoparticle Arrays

Published online by Cambridge University Press:  31 January 2011

Osei K Amponsah
Affiliation:
[email protected], NSU, Norfolk, Virginia, United States
Rakhim R. Rakhimov
Affiliation:
[email protected], NSU, Norfolk, Virginia, United States
Yuri A. Barnakov
Affiliation:
[email protected], NSU, Norfolk, Virginia, United States
Rosa A Lukaszew
Affiliation:
[email protected], College of William & Mary, Williamsburg, Virginia, United States
Jeffrey C Owrutsky
Affiliation:
[email protected], NRL, Washington, District of Columbia, United States
Michael B Pomfret
Affiliation:
[email protected], NRL, Washington, District of Columbia, United States
Natalia Noginova
Affiliation:
[email protected], NSU, 700 Park, Norfolk, Virginia, 23504, United States
Get access

Abstract

Arrays of magnetic nanowires and well-oriented chains of superparamagnetic nanoparticles were fabricated using polymer and alumina membrane templates. The systems were characterized by SQUID and studied by electron magnetic resonance methods. Comparative analysis of the obtained results for different geometries and sizes of the magnetic inclusions is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Appell, D. Nature 419, 553 (2002)Google Scholar
2 Choe, S. B.. J. of Magn. and Magn. Mater. 320, 1112 (2008)Google Scholar
3 Kasagi, T. Tsutaoka, T, Hatakeyama, K.. Appl. Phys. Lett. 88, 172502 (2006)Google Scholar
4 Ebels, U. Duvail, J. L. Wigen, P. E. Piraux, L. Buda, L. D. Ounadjela, K.. Phys. Rev. B 64 144421 (2001)Google Scholar
5 Chen, W. Tang, S. Lu, M. and Phys, Y.Du. J.. Condens. Matter 15, 4632 (2003)Google Scholar
6 Hernandez, E. P. Rezende, S. M. Azevedo, A.. J. Appl. Phys. 103, 07D506 (2008).Google Scholar
7 Jung, J.-S., Jung, Y.-K., Kim, E.-M., Min, S.-H., Jun, J.-H., Malkinski, L. M. Barnakov, Y. Spinu, L. and Stokes, K.. IEEE Trans. Magn. 41, 3403 (2005)Google Scholar
8 Choi, K.-H. Lee, S.-H., Kim, Y.-R., Malkinski, L. Vovk, A. Barnakov, Y. Park, J.-H., Jung, Y.-K., Jung, J.-S., J. Magn. Magn. Mater. 310, 861 (2007)Google Scholar
9 Owrutsky, J. C. Pomfret, M. B. and Brown, D. J.. J. Phys. Chem. C 113, 10947 (2009)Google Scholar
10 Pasquale, M. Olivettu, E. S. Coisson, M. Rizzi, P. Bertotti, G.. J. Appl. Phys. 103, 07D527 (2008)Google Scholar
11 Noginova, N. Weaver, T. Giannelis, E.P. Bourlinos, A.B. Atsarkin, V. A. Demidov, V. V.. Phys. Rev. B 77, 014403 (2008)Google Scholar
12 Fittipaldi, M. Sorace, L. Barra, A.-L., Sangregorio, C. Sessoli, R. and Gatteschi, D. Phys. Chem. Chem. Phys. 111, 6555 (2009)Google Scholar