Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:35:40.487Z Has data issue: false hasContentIssue false

Electron Emission from Nano-Structured Diamond

Published online by Cambridge University Press:  10 February 2011

W. Zhu
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A.
G. P. Kochanski
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A.
S. Jin
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A.
Get access

Abstract

Strong and sustained electron emission at low electric fields has been observed in undoped, nano-structured diamond. The cold cathode emitters consist of a layer of nanometer-size diamond particulates coated on a silicon substrate which is subsequently heat treated in a hydrogen plasma for activation. Electron emission for a current density of 10 mA/cm2is observed at an applied field of 3-5 V/μm. We attribute this excellent emission property to the high defect density in the nano-structured diamond particles and the low electron affinity associated with the diamond surface. The emitters are useful for applications such as flat panel displays as, in addition to the very low fields required, they can easily be deposited on large area substrates by low-cost coating techniques and do not require complicated microtip fabrication processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brodie, I. and Spindt, C. A., Adv. Electron. Electron Phys. 83, 1106 (1992).Google Scholar
2 Castellano, J. A., Handbook of Display Technology (Academic, New York, 1992).Google Scholar
3 Himpsel, F. J., Knapp, J. A., Van Vechten, J. A. and Eastman, D. E., Phys. Rev. B 20, 624627 (1979).Google Scholar
4 Weide, J. Van der and Nemanich, R. J., Appl. Phys. Lett. 62, 18781880 (1993).Google Scholar
5 Geis, M. W., Efremow, N. N., Woodhouse, J. D., McAleese, M. D., Marchywka, M., Socker, D. G. and Hochedez, J. F., IEEE Electron Device Letters, 12, 456459 (1991).Google Scholar
6 Wang, C., Garcia, A., Ingram, D. C., Lake, M. and Kordesch, M. E., Electronics Letters, 27, 14591460 (1991).Google Scholar
7 Xu, N. S., Latham, R. V. and Tzeng, Y., Electronics Letters, 29, 15961597 (1993).Google Scholar
8 Okano, K., Hoshina, K., Iida, M., Koizumi, S. and Inuzuka, T., Appl. Phys. Lett., 64, 27422744 (1994).Google Scholar
9 Zhu, W., Kochanski, G. P., Jin, S., Seibles, L., Jacobson, D., McCormack, M. and White, A., Appl. Phys. Lett. 67, 11571159 (1995).Google Scholar
10 Zhu, W., Kochanski, G. P., Jin, S., and Seibles, L., J Appl. Phys. 78, 27072711 (1995).Google Scholar
11 Kumar, N., Schmidt, H. K. and Xie, C., Solid State Technol. 38, 7174 (May 1995).Google Scholar
12 Geis, M. W., Twichell, J. C., Efremow, N. N., Krohn, K. and Lyszczarz, T. M., Appl. Phys. Lett. 68, 22942296 (1996).Google Scholar
13 Okano, K., Koizumi, S., Silva, S. R. P. and Amaratunga, G. A. J., Nature 381, 140141 (1996).Google Scholar
14 Geis, M. W., Twichell, J. C. and Lyszczarz, T. M., J. Vac. Sci. Technol. B 14, 20602067 (1996).Google Scholar
15 Gildenblat, G. S., Grot, S. A. and Badzian, A. R., Proc. IEEE 79, 647668 (1991).Google Scholar
16 Das, K. K., Diamond Films and Coatings, edited by Davis, R. F., Noyes Publications, Park Ridge, NJ, 1993, pp. 381410.Google Scholar
17 Pate, B. B., Stefan, P. M., Binns, C., Jupiter, P. J., Shek, M. L., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol. 19, 349354 (1981).Google Scholar
18 Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H. and Ishitani, A., Appl. Phys. Lett., 67, 694696 (1995).Google Scholar
19 Fowler, R. H. and Nordheim, L. W., Proc. Roy. Soc. London Ser. A 119, 173181 (1928).Google Scholar
20 Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J Vac. Sci. Technol. B 14, 20112019 (1996).Google Scholar
21 Xu, N. S., Tzeng, Y. and Latham, R. V., J. Phys. D: Appl. Phys. 26, 17761780 (1993).Google Scholar
22 Shovlin, J. D. and Kordesch, M. E., Appl. Phys. Lett., 65, 863865 (1994).Google Scholar
23 Geis, M. W., Twichell, J. C., Macaulay, J. and Okano, K., Appl. Phys. Lett., 67, 13281330 (1995).Google Scholar
24 Zhu, W., Kochanski, G. P. and Jin, S., unpublished data.Google Scholar