Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-12T15:11:49.586Z Has data issue: false hasContentIssue false

Electron Beam Activated Diamond Devices

Published online by Cambridge University Press:  10 February 2011

Shiow-Hwa Lin
Affiliation:
ThermoTrex Corporation, San Diego, CA 92121-2306
Lawrence H. Sverdrup
Affiliation:
ThermoTrex Corporation, San Diego, CA 92121-2306
Get access

Abstract

Diamond's unique properties are ideally suited for high power and high frequency electronic applications. Natural type Ila diamond wafers of various thicknesses and active areas were used to construct several electron beam activated diamond devices. Average voltage gradients in the diamond target on the order of a mega-volt per centimeter were obtained. Possibilities of improving the attainable average voltage gradient are discussed. Electron activation avoids the necessity of semiconducting doping of the active diamond devices. The electron bombardment on diamonds yields a current-voltage characteristics very similar to that of a bipolar transistor. In the experiments discussed here, the diamond conduction to bombarding current gain ranged from 1,000 to 3,000 depending upon the diamond thickness and the bombarding electron energy. The bombarded diamond on-state resistance is consistent with a simple carrier drift and space charge model. Maximum conduction current density achieved in diamond is 19kA/cm2. High power switching of greater than 25kW with less than 100ns risetime is demonstrated. An electron beam bombarded millimeter wave diamond device has generated more than one watt of power.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proc. IEEE, May 1991 special issue on Large Bandgap Electronic Materials and Components.Google Scholar
2. Kania, D.R., Landstrass, M.I., Plano, M.A., Pan, L.S. and Han, S., Dia. and Rel. Mat. 2 1012 (1993).Google Scholar
3. Pan, L. S., Han, S., Kania, D. R., Zhao, S., Gan, K. K., Kagan, H., Kass, R., Malchow, R., Morrow, F., Palmer, W. F., Kim, S. K., Sannes, F., Schnetzer, S., Stone, R., Thompson, G. B., Sugimoto, Y, Fry, A., Kanda, S., Olsen, S., Franklin, M., IIIAger, J. W., and Pianetta, P., J. Appl. Phys. 74, 1086, (1993).Google Scholar
4. Ho, P. T., Lee, C. H., Stephenson, J. C., and Cavanagh, R. R., Opt. Commun. 46, 202 (1983).Google Scholar
5. Dreifus, D. L. in Diamond: Electronic Properties and Applications, edited by Pan, L.S. and Kania, D.R., (Kluwer, MA, 1995), pp. 371442; S.A. Grot, ibid. pp. 443–461.Google Scholar
6. Geis, M., Efremow, N., Woodhouse, J., Mcaleese, M., Marchywka, M., Socker, D. and Hochedez, J., IEEE Elect. Dev. Lett. 12, 456 (1991).Google Scholar
7. Hessmer, R., Schreck, M., Geier, S. and Strizker, B., Dia. and Rel. Mat. 3, 951 (1994).Google Scholar
8. Landstrass, M. I., in Diamond-Film Semiconductors (SPIE Vol.2151), 52 (1994).Google Scholar
9. Bernholc, J., Kajihara, S. A. and Antonelli, A., in Proc. 2nd Intl. Conf. on New Diamond Science and Technology edited by Messier, R., Glass, J.T., Butler, J.E. and Roy, R., 923 (1991).Google Scholar
10. Gewartowski, J. W. and Watson, H. A., Principles of Electron Tubes, (D. Van Nostrand, New Jersey, 1965).Google Scholar
11. Alig, R. C. and Bloom, S., Phys. Rev. Lett. 35, 1522 (1975).Google Scholar
12. Koike, J., Parkin, D. M., and Mitchell, T. E., Appl. Phys. Lett. 60, 1450 (1992).Google Scholar
13. Lin, S.-H., Sverdrup, L. H., Garner, K., Korevaar, E., Cason, C. and Phillips, C. in Optically Activated Switching III (SPIE Proc. 1873), 1993, pp. 93109.Google Scholar
14. Lin, S.-H. and Sverdrup, L. H in Diamond IV (Proc. 4th Intl. Symp. on Diamond Materials), 1995, edited by Ravi, K.V. and Dismukes, J.P. (ECS Proc. 95–4), pp. 601606.Google Scholar
15. Lin, S.-H. and Sverdrup, L. H in Appl. of Diamond Films and Related Materials: 3rd Int'l. Conf., 1995, Editors: Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M. and Murakawa, M., pp. 7982.Google Scholar
16. Mechanical polishing was done by Drukker International, distributed in the U.S. by Harris Diamond Corp., 100 Stieri Court, Mt. Arlington, NJ 07856.Google Scholar
17. Laser machining was done by Potomac Photonics Inc., 4445 Nicole Drive, Lanham, MD 20706.Google Scholar
18. Reactive ion etching was done by Curtis Technology Inc., 11391 Sorrento Valley Road, San Diego, CA 92121.Google Scholar
19. Bates, D. J., Knight, I. and Spinella, S., Adv. El. and El. Phys. 44, 221, (1977).Google Scholar
20. Tiger codes are available from Oak Ridge National Laboratory, Radiation Shielding Information Center, P.O. Box 2008, Oak Ridge, TN 37831-6362.Google Scholar
21. Silzars, A., Knight, R. I., and Norris, C. B., Jr., IEEE Trans. Electron Devices, ED–21, 193, (1974).Google Scholar
22. Schoenbach, K. H., Lakdawala, V. K., Stoudt, D. C., Smith, T. F., and Brinkmann, R. P., IEEE Trans. Electron Devices, ED–36, 1793, (1989).Google Scholar
23. Brinkmann, R. P., J. Appl. Phys. 68, 318, (1990).Google Scholar
24. Ibid Ref. 5, Appendix.Google Scholar
25. McKay, K. G., Phys. Rev. 74, 1606 (1948); 77, 816 (1950).Google Scholar
26. Holzman, E. L. and Robertson, R. S., Solid-State Microwave Power Oscillator Design, (Artech House, MA, 1992), Chap. 6.Google Scholar
27. Misawa, T. and Kenyon, N.D., IEEE Trans. Micro. Theory and Tech. MTT–18, 969, (1970).Google Scholar