Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:12:30.408Z Has data issue: false hasContentIssue false

Electroluminescence of Erbium in Oxygen Doped Silicon

Published online by Cambridge University Press:  10 February 2011

S. Lombardo
Affiliation:
CNR-IMETEM, Stradale Primosole, 50, 195121 Catania, Italy, cnrgct.infn.it
S. U. Campisano
Affiliation:
CNR-IMETEM, Stradale Primosole, 50, 195121 Catania, Italy, cnrgct.infn.it
G. N. Van Den Hoven
Affiliation:
FOM-AMOLF, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
A. Polman
Affiliation:
FOM-AMOLF, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

It is demonstrated room-temperature electroluminescence at 1.54 μm in erbiumimplanted oxygen doped silicon (27 at. 0), due to intra-4f transitions of the Er3+. The luminescence is electrically stimulated by biasing metal-(Si:O,Er)-p+ silicon diodes. The 30 nm thick Si:O,Er films are amorphous layers deposited onto silicon substrates by chemical vapour deposition of SiH4 and N20, doped by ion implantation with Er to a concentration up to ≈ 1.5 at.%, and annealed in a rapid thermal annealing furnace. The most intense electroluminescence is obtained in samples annealed at 400°C in reverse bias under breakdown condition and it is attributed to impact excitation of erbium by hot carriers injected from the Si into the Si:O,Er layer. The electrical characteristics of the diode are studied in detail and related to the electroluminescence characteristics. A lower limit for the impact excitation cross-section of ≈6×10−16 cm2 is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M. and Gauneau, M., Jpn. J. Appl. Phys. 29, L521 (1990).Google Scholar
3. Michel, J., Benton, J. L., Ferrante, R. J., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
4. Coffa, S., Franzò, G., Priolo, F., Polman, A. and Serna, R., Phys. Rev. B 49, 16313 (1994).Google Scholar
5. Lombardo, S., Campisano, S. U., van den Hoven, G. N., Cacciato, A. and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
6. Lombardo, S., Campisano, S. U., van den Hoven, G. N., and Polman, A., J. Appl. Phys. 77, 6504 (1995).Google Scholar
7. van den Hoven, G. N., Shin, J. H., Polman, A., Lombardo, S., and Campisano, S. U., J. Appl. Phys 78, 2642 (1995).Google Scholar
8. Lombardo, S., Campisano, S. U., and Baroetto, F., Phys. Rev. B 47, 13561 (1993).Google Scholar
9. Lombardo, S., Campisano, S. U., and Nicotra, M., J. Appl. Phys. 75, 345 (1994).Google Scholar