Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:46:15.992Z Has data issue: false hasContentIssue false

Electrokinetic Phenomena in Porous Media

Published online by Cambridge University Press:  10 February 2011

David B. Pengra
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, U.S.A.
Po-Zen Wong
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, U.S.A.
Get access

Abstract

Electrokinetic phenomena, such as electroosmosis (fluid-flow induced by applied electric fields) and streaming potential (the complementary process) are known to exist in brine-saturated porous media, but are very difficult to measure. With modern instrumentation and an ac method, we can now determine these transport coefficients accurately, and use them to characterize the permeability k1, the effective throat radius Re, and the electric potential at the slip-plane, or ζ-potential. Our study shows that permeability can be determined by two different means: by combining the dc values of the streaming potential, electroosmotic pressure and conductivity; or from the frequency response of ac electroosmosis alone. The high sensitivity of the method allows us to measure k over the 0.1–10,000 millidarcy range with less than lOkPa applied pressure. This article reviews some of the basics of electrokinetics and describes our methods. We also discuss effects of brine salinity and possible effects due to the fractal nature of the pore surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wong, P.-z., MRS Bull. 19 (5) p.32 (1994).Google Scholar
2. Wong, P.-z., Koplik, J., and Tomanic, J. P., Phys. Rev. B 30, 6606 (1984).Google Scholar
3. Katz, A. J. and Thompson, A. H., Phys. Rev. B 34, 8179 (1986).Google Scholar
4. Kenyon, W. E., Day, P. I., Straley, C., and Willemsen, J. F., SPE Paper No. 15643 (1986).Google Scholar
5. Thompson, A. H., Sinton, S. W., Huff, S. L., Katz, A. J., Rashke, R. A., and Gist, G. A., J. Appl. Phys. 65, 3259 (1989).Google Scholar
6. Li, S. X., Pengra, D. B., and Wong, P.-z., Phys. Rev. E 51, 5748 (1995).Google Scholar
7. Saxén, U., Ann. Physik und Chemie 47, 46 (1892).Google Scholar
8. Onsager, L., Phys. Rev. 37, 405 (1931); 38, 2265 (1931).Google Scholar
9. Kortüm, G., Treatise on Electrochemistry, 2nd revised English edition (Elsevier, Amsterdam, 1965).Google Scholar
10. Johnson, D. L., Koplik, J. and Schwartz, L. M., Phys. Rev. Lett. 57, 2564 (1986).Google Scholar
11. See, for example, deGroot, S. R. and Mazur, P., Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
12. Wyllie, M. R. J., Petro. Trans. AIME 192, T.P.2940 (1951).Google Scholar
13. See, for example, Horowitz, P. and Hill, W., The Art of Electronics, 2nd ed. (Cambridge University, New York, 1983), pp. 628631.Google Scholar
14. LeMehaute, A. and Crepy, G., Solid State Ionics 9–10, 17 (1983).Google Scholar
15. Pajkossy, T., J. Electroanal. Chem. 364, 111 (1994).Google Scholar
16. Cao, Q.-z., Wong, P.-z. and Schwartz, L. M., Phys. Rev. B 50, 5771 (1994).Google Scholar
17. Plona, T. J. and Johnson, D. L., in 1980 Ultrasonics Symposium, 868 (IEEE, 1980).Google Scholar
18. Pengra, D. B., Li, S. X., Shi, L., and Wong, P.-z., in Dynamics in Small Confining Systems II, Mat. Res. Soc. Symp. Proc. 366, Drake, J. M., Klafter, J., Kopelman, R., Troian, S. M., eds., pp. 201206 (MRS, Pittsburg, 1995).Google Scholar
19. Wong, P.-z., Physics Today 41, No. 12, 24 (1988).Google Scholar
20. Wong, P.-z., Howard, J., and Lin, J.-S., Phys. Rev. Lett. 57, 637 (1986).Google Scholar
21. Thompson, A. H., Katz, A. J. and Krohn, C. E., Adv. in Phys. 36, 625 (1987).Google Scholar