Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:44:02.505Z Has data issue: false hasContentIssue false

Electrofluidic Positioning of Biofunctionalized Nanowires

Published online by Cambridge University Press:  01 February 2011

Thomas J. Morrow
Affiliation:
[email protected], The Pennsylvania State University, Chemistry, University Park, United States
Jaekyun Kim
Affiliation:
[email protected], The Pennsylvania State University, Electrical Engineering, University Park, United States
Mingwei Li
Affiliation:
[email protected], The Pennsylvania State University, Electrical Engineering, University Park, United States
Theresa S. Mayer
Affiliation:
[email protected], The Pennsylvania State University, Electrical Engineering, University Park, United States
Christine D. Keating
Affiliation:
[email protected], The Pennsylvania State University, Chemistry, University Park, United States
Get access

Abstract

We functionalized nanowires with three different probe peptide nucleic acid (PNA) sequences, and assembled the three populations onto a lithographically patterned chip. Electrofluidic assembly enabled positioning each set of nanowires to span a different pair of guiding electrodes. Fluorescence imaging was used to probe whether the PNA on the individual nanowires remained able to selectively bind complementary DNA targets following assembly and integration of the positioned nanowires onto the chip surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patolsky, F., Zheng, G., Lieber, C. M., Anal. Chem., 78, 4260 (2006).Google Scholar
2. Wang, J., Analyst, 130, 421, (2005).Google Scholar
3. Carrascosa, L. G., Moreno, M., Álvarez, M., Lechuga, L. M., Trends in Anal. Chem., 25, 196 (2006).Google Scholar
4. Patolsky, F., Timko, B. P., Zheng, G., Lieber, C. M., MRS Bull., 32, 142 (2007).Google Scholar
5. Li, M., Bhiladvala, R. B., Morrow, T. J., Sioss, J. A., Lew, K., Redwing, J. M., Keating, C. D., Mayer, T. S., Nature Nanotech., 3, 88 (2008).Google Scholar
6. Cao, Y., Kovalev, A. E., Xiao, R., Kim, J., Mayer, T. S., Mallouk, T. E., Nano Lett. In Press 10.1021/nl800940e (2008).Google Scholar
7. Yu, G., Cao, A., Lieber, C. M., Nature Nanotech., 2, 372 (2007).Google Scholar
8. McAlpine, M. C., Ahmad, H., Wang, D., Heath, J. R., Nature Mater. 6, 379 (2007).Google Scholar
9. Aubrun, R. P., Kreil, D. P., Meadows, L. A., Fischer, B., Matilla, S. S., Russel, S., Trends Biotech., 23, 374 (2005).Google Scholar
10. Bietsch, A., Zhang, J., Hegner, M., Lang, H. P., Gerber, C., Nanotech., 15, 873 (2004).Google Scholar
11. Salaita, K., Wang, Y., Mirkin, C. A., Nature Nanotech., 2, 145 (2007).Google Scholar
12. Martin, C. R., Science, 266, 1961 (1994).Google Scholar
13. Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D. J., Walton, I. D., Cromer, R., Keating, C. D., Natan, M. J., Science, 294, 137 (2001).Google Scholar
14. Sioss, J. A., Keating, C. D., Nano Letters, 5, 1779 (2005).Google Scholar
15. Smith, P. A., Nordquist, C. D., Jackson, T. N., Mayer, T. S., Martin, B. R., Mbindyo, J., Mallouk, T. E., Appl. Phys. Lett. 77, 1399 (2000).Google Scholar