Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T10:30:52.796Z Has data issue: false hasContentIssue false

Electrodeposition of Strained-Layer Superlattices

Published online by Cambridge University Press:  10 February 2011

T. P. Moffat*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Md 20899
Get access

Abstract

A variety of Cu/(Ni, Co) multilayers have been grown on Cu single crystals by pulse plating from an alloy electroplating bath. Copper is deposited under mass transport control while the iron group metal is deposited under interfacial charge transfer control. The structural evolution of these films is influenced by the morphological instability of the mass transport limited copper deposition reaction and the development of growth twins during iron-group metal deposition. Specular films have been obtained for growth on Cu(100) while rough, defective films were typically obtained for growth on Cu(111) and Cu(110).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Structure and Properties of Multilayer Thin Films, eds. Nguyen, T., Larson, B., Clemens, B., Shin, S-C. and Sato, K., V382, MRS, Pittsburgh (1995).Google Scholar
2. Parkin, S.S., Annu. Rev. Mater. Sci., 25, 357 (1995).Google Scholar
3. Lenczowski, S.K.J., Gijs, M.A.M., Giesbers, J.B., van de Veerdonk, R.J.M. and de Jonge, W.J.M., Phys. Rev. B, 50, 9982 (1994);Google Scholar
Lenczowski, S.K.J., Schonenberger, C., Gijs, M.A.M. and de Jonge, W.J.M., J. Magn. Magn. Mater., 148, 455 (1995).Google Scholar
4. Alper, M., Aplin, P.S., Attenbourough, K., Dingley, D.J., Hart, R., Lane, S.J., Lashmore, D.S. and Schwarzacher, W., J. Magn. Magn. Mater., 126, 8 (1993).Google Scholar
5. Liu, K., Nagodawithana, K., Searson, P.C. and Chien, C.L., Phys. Rev. B., 51, 7381 (1995); and ref. therein.Google Scholar
6. Tench, D. and White, J., Met. Trans., 15A, 2039 (1984).Google Scholar
7. Vidal, R. and West, A.C., J. Electrochem. Soc., 142, 2682 (1995);Google Scholar
Vidal, R. and West, A.C., J. Electrochem. Soc., 142, 2689 (1995).Google Scholar
8. West, A. and Newman, J., J. Electrochem. Soc, 138, 1620 (1991).Google Scholar
9. Harrison, J.A. and Thirsk, H.A., Electroanalytical Chemistry, 5, 67 (1971).Google Scholar
10. Fullerton, E.E., Pearson, J., Sowers, C.H., Bader, S.D., Wu, X.Z., and Sinha, S.K., Phys. Rev. B 48, 17432 (1993).Google Scholar
11. Aogaki, R., Kitazawa, K., Kose, Y. and Fueki, K., Electrochmica Acta, 25, 965 (1980).Google Scholar
12. Aogaki, R. and Makino, T., J. Electrochem. Soc, 131, 40 (1984).Google Scholar
13. De Miguel, J.J., Sanchez, A., Cebollada, A., Gallego, J.M., Ferron, J. and Ferrer, S., Surf. Sci., 189/190, 1062 (1987).Google Scholar
14. Rhead, G.E., Surf. Sci., 47, 207 (1975).Google Scholar
15. Moffat, T.P., In Situ Electron and Tunneling Microscopy of Dynamic Processes. V-404, eds. Sharma, R., Gai, P., Whitman, L., Josifovska, M., and Sinclair, R., MRS, Pittsburgh, PA (1996)Google Scholar
16. Fullerton, E.E., Schuller, I.K., Vanderstraeten, H. and Bruynseraede, Y., Phys. Rev. B, 45, 9292 (1992).Google Scholar
17. Moffat, T.P., J. Electrochem. Soc., 142, 3767 (1995).Google Scholar