Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:47:31.176Z Has data issue: false hasContentIssue false

Electrodeposition of CU2SE thin films by Electrochemical Atomic Layer Epitaxy (EC-ALE).

Published online by Cambridge University Press:  11 February 2011

Raman Vaidyanathan
Affiliation:
Department of Chemistry
Mkhulu K. Mathe
Affiliation:
Department of Chemistry
Patrick Sprinkle
Affiliation:
Department of Physics, University of Georgia, Athens, Georgia 30602.
Steve M Cox
Affiliation:
Department of Chemistry
Uwe Happek
Affiliation:
Department of Physics, University of Georgia, Athens, Georgia 30602.
John L Stickney
Affiliation:
Department of Chemistry
Get access

Abstract

Electrochemical atomic-layer epitaxy (EC-ALE) is an approach to electrodepositing thin-films of compound semiconductors. It takes advantage of underpotential deposition (UPD), deposition of a surface limited amount (a monolayer or less) of an element at a potential less negative than bulk deposition, to form a thin-film of a compound--one atomic layer at a time. Ideally, the 2-D growth mode should promote epitaxial deposition.

We report the formation of compound Cu2Se, at room temperature by electrochemical atomic layer epitaxy (EC-ALE). Cyclic voltammograms were used to determine the deposition potentials of each element. An automated deposition program was used to form 750 cycles of Cu2Se thin films. Electron probe microanalysis was done to determine the stoichiometry of the thin films. X-ray diffraction of the 200 cycle deposit indicated the presence of polycrystalline Cu2Se. The atomic ratio of Cu/Se in the thin films was found to be 2. Band gap of the thin films were determined by reflection absorption measurements. The band gap of the 200 cycle Cu2Se films was found to be 1.6 eV. X-ray diffraction of 350 and 750 cycle Cu2Se films, indicated the deposits consisted of Cu3Se2 and Cu2Se.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Fulop, G. F.; Taylor, R. M. Ann. Rev. Mater. Sci. 1985, 15, 197.Google Scholar
(2) Rajeshwar, K. Adv. Mater. 1992, 4, 23.Google Scholar
(3) Hodes, G. SEM 1994, 32, 323.Google Scholar
(4) Pandey, R. K.; Sahu, S. N.; Chandra, S. Handbook of Semiconductor Electrodeposition, 1st ed.; Marcel Dekker, Inc.: New York, 1996.Google Scholar
(5) Gobrecht, H.; Liess, H. D.; Tausend, A. Ber. Bunsenges. Phys. Chem. 1963, 67, 930.Google Scholar
(6) Hodes, G.; Manassen, J.; Cahen, D. Nature 1976, 261, 403.Google Scholar
(7) Panicker, M. P. R.; Knaster, M.; Kroger, F. A. J. Electrochem. Soc. 1978, 125, 566.Google Scholar
(8) Adurodija, F. O.; Carter, M. J.; Hill, R. Solar Energy Materials and Solar Cells 1995, 37, 203216.Google Scholar
(9) Ashida, A.; Hachiuma, Y.; Yamamoto, N.; Ito, T.; Cho, Y. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1993, 32, 8485.Google Scholar
(10) Ashida, A.; Hachiuma, Y.; Yamamoto, N.; Ito, T.; Cho, Y. Journal of Materials Science Letters 1994, 13, 11811184.Google Scholar
(11) Hachiuma, Y.; Ashida, A.; Yamamoto, N.; Ito, T.; Cho, Y. Solar Energy Materials and Solar Cells 1994, 35, 247254.Google Scholar
(12) Lim, J. W.; Choi, J. H.; Choi, I. H. Journal of the Korean Physical Society 1997, 30, 293298.Google Scholar
(13) Park, S. C.; Kwon, S. H.; Song, J. S.; Ahn, B. T. Solar Energy Materials and Solar Cells 1998, 50, 4349.Google Scholar
(14) Park, J. S.; Dong, Z.; Kim, S.; Perepezko, J. H. Journal of Applied Physics 2000, 87, 36833690.Google Scholar
(15) Park, S. C.; Lee, D. Y.; Ahn, B. T.; Yoon, K. H.; Song, J. Solar Energy Materials and Solar Cells 2001, 69, 99105.Google Scholar
(16) Massaccesi, S.; Sanchez, S.; Vedel, J. Journal of the Electrochemical Society 1993, 140, 25402546.Google Scholar
(17) Lippkow, D.; Strehblow, H. H. Electrochimica Acta 1998, 43, 21312140.Google Scholar
(18) Pottier, D.; Maurin, G. J. Appl. Electrochem. 1989, 19, 361.Google Scholar
(19) Sebastian, P. J.; Pattabi, M. Journal of Physics D-Applied Physics 1992, 25, 981985.Google Scholar
(20) Bhattacharya, R. N.; Batchelor, W.; Wiesner, H.; Hasoon, F.; Granata, J. E.; Ramanathan, K.; Alleman, J.; Keane, J.; Mason, A.; Matson, R. J.; Noufi, R. N. Journal of the Electrochemical Society 1998, 145, 34353440.Google Scholar
(21) Guillen, C.; Martinez, M. A.; Herrero, J. Vacuum 2000, 58, 594601.Google Scholar
(22) Gregory, B. W.; Suggs, D. W.; Stickney, J. L. J. Electrochem. Soc. 1991, 138, 1279.Google Scholar
(23) Huang, B. M.; Colletti, L. P.; Gregory, B. W.; Anderson, J. L.; Stickney, J. L. Journal of the Electrochemical Society 1995, 142, 3007.Google Scholar
(24) Colletti, L. P.; Flowers, B. H. Jr; Stickney, J. L. Journal of the Electrochemical Society 1998, 145, 14421449.Google Scholar
(25) Colletti, L. P.; Stickney, J. L. Journal of the Electrochemical Society 1998, 145, 3594.Google Scholar
(26) Demir, U.; Shannon, C. Langmuir 1994, 10, 27942799.Google Scholar
(27) Aloisi, G. D.; Cavallini, M.; Innocenti, M.; Foresti, M. L.; Pezzatini, G.; Guidelli, R. Journal of Physical Chemistry B 1997, 101, 47744780.Google Scholar
(28) Hayden, B. E.; Nandhakumar, I. S. Journal of Physical Chemistry B 1998, 102, 4897.Google Scholar
(29) Goodman, C. H. L.; Pessa, M. V. JAP 1986, 60, R65.Google Scholar
(30) Sakaue, H.; Asami, K.; Ichihara, T.; Ishizuka, S.; Kawamura, K.; HJoriike, Y. In Atomic Layer Growth and Processing; Kuech, T. F., Dapkus, P. D., Aoyagi, Y., Eds.; Mater. Res. Soc.: Pittsburgh, 1991; Vol. 222, pp 195.Google Scholar
(31) Bedair, S. Atomic Layer Epitaxy; Elsevier: Amsterdam, 1993.Google Scholar
(32) Kolb, D. M. In Advances in Electrochemistry and Electrochemical Engineering; Gerischer, H., Tobias, C. W., Eds.; John Wiley: New York, 1978; Vol. 11, pp 125.Google Scholar
(33) Adzic, R. R. In Advances in Electrochemistry and Electrochemical Engineering; Gerishcher, H., Tobias, C. W., Eds.; Wiley-Interscience: New York, 1984; Vol. 13, pp 159.Google Scholar
(34) Gewirth, A. A.; Niece, B. K. Chem. Rev. 1997, 97, 11291162.Google Scholar
(35) Vaidyanathan, R.; Stickney, J. L.; Happek, U. J. Electroanal. Chem. 2002, accepted.Google Scholar
(36) Herrick, R. D. I.; Stickney, J. L. In New Directions in Electroanalytical Chemistry; Leddy, J., Wightman, M., Eds.; The Electrochemical Society: Pennington, NJ, 1996; Vol. 96-9, pp 186.Google Scholar
(37) Oliveira, M. C. F.; Azevedo, M.; Cunha, A. TSF 2002, 405, 129134.Google Scholar